We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Researchers Develop Wider Bandwidth Quantum Infrared Spectroscopy

Quantum infrared spectroscopy using ultra-broadband entangled photons.
Credit: KyotoU/Shigeki Takeuchi.
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Our understanding of the world relies greatly on our knowledge of its constituent materials and their interactions. Recent advances in materials science technologies have ratcheted up our ability to identify chemical substances and expanded possible applications.

One such technology is infrared spectroscopy, used for molecular identification in various fields, such as in medicine, environmental monitoring, and industrial production. However, even the best existing tool -- the Fourier transform infrared spectrometer or FTIR -- utilizes a heating element as its light source. Resulting detector noise in the infrared region limits the devices' sensitivity, while physical properties hinder miniaturization.

Now, a research team led by Kyoto University has addressed this problem by incorporating a quantum light source. Their innovative ultra-broadband, quantum-entangled source generates a relatively wider range of infrared photons with wavelengths between 2 μm and 5 μm.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

"This achievement sets the stage for dramatically downsizing the system and upgrading infrared spectrometer sensitivity," says Shigeki Takeuchi of the Department of Electronic Science and Engineering.

Another elephant in the room with FTIRs is the burden of transporting mammoth-sized, power-hungry equipment to various locations for testing materials on-site. Takeuchi eyes a future where his team's compact, high-performance, battery-operated scanners will lead to easy-to-use applications in various fields such as environmental monitoring, medicine, and security.

"We can obtain spectra for various target samples, including hard solids, plastics, and organic solutions. Shimadzu Corporation -- our partner that developed the quantum light device -- has concurred that the broadband measurement spectra were very convincing for distinguishing substances for a wide range of samples," adds Takeuchi.

Although quantum entangled light is not new, bandwidth has thus far been limited to a narrow range of 1 μm or less in the infrared region. This new technique, meanwhile, uses the unique properties of quantum mechanics -- such as superposition and entanglement -- to overcome the limitations of conventional techniques.

The team's independently developed chirped quasi-phase-matching device generates quantum-entangled light by harnessing chirping -- gradually changing an element's polarization reversal period -- to generate quantum photon pairs over a wide bandwidth.

"Improving the sensitivity of quantum infrared spectroscopy and developing quantum imaging in the infrared region are part of our quest to develop real-world quantum technologies," remarks Takeuchi.

Reference: Tashima T, Mukai Y, Arahata M, et al. Ultra-broadband quantum infrared spectroscopy. Optica. 2024;11(1):81. doi: 10.1364/OPTICA.504450

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.