We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Scientists Find Structure of a Protein that Makes Cancer Cells Resistant to Chemotherapy
News

Scientists Find Structure of a Protein that Makes Cancer Cells Resistant to Chemotherapy

Scientists Find Structure of a Protein that Makes Cancer Cells Resistant to Chemotherapy
News

Scientists Find Structure of a Protein that Makes Cancer Cells Resistant to Chemotherapy

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Scientists Find Structure of a Protein that Makes Cancer Cells Resistant to Chemotherapy"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

The protein, called P-glycoprotein or P-gp for short, is one of the main reasons cancer cells are resistant to chemotherapy drugs. Understanding its structure may help scientists design more effective drugs.

The new research was described in the March 27, 2009, issue of the journal Science.

"This structure is an important advance and we hope it is just the beginning of more breakthroughs for us," says the study's senior author Geoffrey Chang, an associate professor at Scripps Research. "The structure is a nice tool for understanding how drugs are transported out of cells by P-gp and for designing drugs to evade P-gp preventing drug resistance. It's very exciting."

P-gp, a protein first identified in 1976, sits in the membrane that surrounds human cells, including those in the gut, intestine, kidney, and brain, where it functions as a gate keeper, shooing out potentially harmful agents. Problematically, P-gp not only transports substances that are harmful out of the cell, but also drugs targeted to cancer cells and HIV-infected cells, as well as some therapeutics aimed at alleviating psychiatric conditions.

"We've long known that P-glycoprotein plays a key role in multidrug resistance in cancer patients, and this work helps us understand how the protein can act on such a wide range of compounds," said Jean Chin, of the National Institutes of Health's (NIH) National Institute of General Medical Sciences (NIGMS), which partially supported the work. "In the future, scientists may be able to use these crystal structures to design chemicals that block P-glycoprotein's activity and restore sensitivity to chemotherapeutic agents."

Origianl article:  http://www.sciencemag.org/cgi/content/abstract/323/5922/1718

 

Advertisement