We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Sign up to read this article for FREE!

After signing up, you'll start to receive regular news updates from us.

Scientists Solve Structure of Protein That Powers Cell Movement

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

The Proceedings of the National Academy of Science has published the three-dimensional structure of a key part of the molecular motor protein, myosin V.

The structure, which describes a protein responsible for the movement of the inner workings of our cells, was determined by a collaborative team of scientists led by Dr. Roberto Dominguez at the not-for-profit Boston Biomedical Research Institute, including Drs. Zenon Grabarek and Renne Lu.

Few people would argue that motility, or movement is one of the most characteristic and fundamental attributes of life. The flexing of a muscle, a heartbeat, digestion, or the much more subtle but immensely important transport that takes place within our cells, are all processes that are different expressions of motility and have one thing in common. All are powered by the protein myosin, or more strictly speaking, by one of the members of the myosin family of molecular motor proteins.

The scientists at Boston Biomedical combined the power of several techniques including X-ray crystallography, resonance energy transfer and molecular modeling to obtain a three-dimensional, atomic resolution structure of the neck region of myosin V. This form of myosin is responsible for organelle transport inside the cells.

The neck region was initially thought to be a mere link within the molecule. The scientists at Boston Biomedical have demonstrated that the myosin's neck region has an unexpectedly complex structure, demonstrating that in addition to the previously recognized function as a rigid link, it is also involved in regulation of function of this important protein and possibly mediates its interactions with other proteins. Understanding the function of myosin V could shed light on disease states involving inappropriate cell movement, such as cancer metastasis.

Boston Biomedical Research Institute is a not-for-profit institution dedicated to the understanding, treatment and prevention of specific human diseases including cancer, Alzheimer's disease, muscular dystrophy, diabetes and conditions such as obesity and reproductive health problems.