We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Smaller Numbers of Dendrites Correlate With Greater Intelligence

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

The more intelligent a person, the fewer connections there are between the neurons in his cerebral cortex. This is the result of a study conducted by neuroscientists working with Dr Erhan Genç and Christoph Fraenz at Ruhr-Universität Bochum; the study was performed using a specific neuroimaging technique that provides insights into the wiring of the brain on a microstructural level.

Together with colleagues from the University of New Mexico in Albuquerque, Humboldt University of Berlin and the Lovelace Biomedical and Environmental Research Institute in Albuquerque, the team from the biopsychology research unit in Bochum published their report in the journal Nature Communications on May 15, 2018.

Intelligence is determined by the number of dendrites

The researchers analysed the brains of 259 men and women using neurite orientation dispersion and density imaging. This method enabled them to measure the amount of dendrites in the cerebral cortex, i.e. extensions of nerve cells that are used by the cells to communicate with each other. In addition, all participants completed an IQ test. Subsequently, the researchers associated the gathered data with each other and found out: the more intelligent a person, the fewer dendrites there are in their cerebral cortex.

Using an independent, publicly accessible database, which had been compiled for the Human Connectome Project, the team confirmed these results in a second sample of around 500 individuals.

Previously conflicting results are thus explained

The new findings provide an explanation of conflicting results gathered in intelligence research to date. For one, it had been previously ascertained that intelligent people tend to have larger brains. “The assumption has been that larger brains contain more neurons and, consequently, possess more computational power,” says Erhan Genç. However, other studies had shown that – despite their comparatively high number of neurons – the brains of intelligent people demonstrated less neuronal activity during an IQ test than the brains of less intelligent individuals.

“Intelligent brains possess lean, yet efficient neuronal connections,” concludes Erhan Genç. “Thus, they boast high mental performance at low neuronal activity.”

This article has been republished from materials provided by Ruhr University Bochum. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference:
Erhan Genç, Christoph Fraenz, Caroline Schlüter, Patrick Friedrich, Rüdiger Hossiep, Manuel C. Voelkle, Josef M. Ling, Onur Güntürkün, Rex E. Jung: Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence, in: Nature Communications, 2018, DOI: 10.1038/s41467-018-04268-8