We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Stiffening a Blow to Cancer Cells

Stiffening a Blow to Cancer Cells

Stiffening a Blow to Cancer Cells

Stiffening a Blow to Cancer Cells

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Stiffening a Blow to Cancer Cells"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

11.10.2016 Extracellular-matrix-stiffness-400x330.png

Chemotherapy is often used to combat malignant tumors, but rarely completely cures patients due to cancer cells’ resistance to drugs. It has been thought that the environment in which particular cancer cells live could impact their response to specific drugs, but until now, it’s been difficult to analyze exactly how mechanics — specifically stiffness of the extracellular material that surrounds cells and structures tissues — alter a drug’s efficacy.

At Harvard’s Wyss Institute for Biologically Inspired Engineering, scientists have now found a way to analyze how the stiffness of this "extracellular matrix" affects chemotherapy treatment. Wyss Core Faculty member David Mooney, Ph.D., is the senior author on the Proceedings of the National Academy of Sciences report that details the novel method.

Working with Jae-Won Shin, Ph.D., Mooney has unveiled a new drug screening assay using alginate hydrogels — biocompatible materials made from a polysaccharide found in brown seaweed — which can be tuned to recapitulate mechanical stiffness and other physical properties that are characteristic within tumor and normal tissue.

"To have success with chemotherapy and other drug therapies, we will likely need to screen their effectiveness against cells living in various environments, and not just assume that cells will always respond to a drug the same way that they would in conventional cell culture," said Mooney, who is also the Robert P. Pinkas Family Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS).

Mooney’s team has previously analyzed and confirmed the importance of mechanical cues by developing tunable alginate hydrogels for applications such as tissue regeneration, stem cell differentiation, stimulation of blood vessel formation, and bone and cartilage repair.

Now, Mooney and Shin have designed a 3D microenvironment with tunable matrix stiffness, inside of which cancer cells can be bombarded with drugs and their resistance (or destruction) observed. By varying matrix stiffness, they demonstrated that mechanical cues control how cancer cells respond to chemotherapy drugs. For many drugs, the softer the matrix, the more that cancer cells resisted treatment.

Using this approach, a wide array of different cellular environments mimicking various tissues in the body could be used to more realistically screen cancer cells for their responses to potential drugs, allowing the right drug regimen to be selected for treating a specific patient’s type of cancer and its location.

Mooney and Shin implanted the same hydrogels in mice to investigate in vivo if matrix softening would accelerate cancer growth and increase its resistance to chemotherapy — and indeed, it did. In the future, 3D hydrogels could better identify promising drugs early on in the discovery process, and much farther down the pipeline, potentially be used to design personalized cancer drug therapy to overcome resistance.

"We envision that our 3D hydrogels could bridge the gap between in vitro drug screening and in vivo pre-clinical studies," said Shin, who was formerly a Wyss Institute Postdoctoral Fellow and is currently Assistant Professor of Pharmacology and Bioengineering at University of Illinois at Chicago.

Although Mooney and Shin have initially zeroed in on using the method to improve cancer treatment, it could be used more broadly to screen drugs for their efficacy in treating a number of different diseases throughout the body.

"It is crucial that we consider the importance of the local tissue microenvironment when designing new cancer therapies, as we now understand that mechanics is as important as biochemistry," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School (HMS) and the Vascular Biology Program at Boston Children’s Hospital, as well as Professor of Bioengineering at Harvard SEAS. "These engineered 3D hydrogels, which enable investigators to mimic the mechanical environment of cancers in different organs, also potentially offer a new approach to developing precision medicine therapies being that could be tailored to patient-specific tumor environments."