We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
“Stressing” Cancer Cells With Spice
News

“Stressing” Cancer Cells With Spice

“Stressing” Cancer Cells With Spice
News

“Stressing” Cancer Cells With Spice

Credit: Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "“Stressing” Cancer Cells With Spice"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

A new study by scientists in Japan and Indonesia reports how an experimental drug agent stops cancer cells from growing. A little over a decade ago, Indonesian scientists first reported pentagamavumon-1 (PGV-1), an analogue of a molecule found in turmeric and that has been since discovered to have anti-cancer effects. In the new study, tests on cancer cells and animals reveal that these anti-cancer effects come from PGV-1 inhibiting a series of enzymes responsible for the metabolism of reactive oxygen species. This finding is expected to clarify how modifications to PGV-1 will lead to its use for cancer treatment.

The popular spice turmeric has for centuries been used not just as a flavoring, but also as medicine, with history having shown it to have a number of anti-inflammatory and even anti-cancer benefits. These medicinal benefits come from the compound curcumin, which is commonly sold as an herbal supplement. Several studies have examined curcumin's anti-cancer properties, but the high doses required and poor understanding of the chemical process through which curcumin acts have limited these efforts.

The team of Professor Jun-ya Kato, at Nara Institute of Science and Technology (NAIST), had previously identified that curcumin acts on the same reactive oxygen species enzymes as its analogue, PGV-1. By suppressing the enzyme activity, reactive oxygen species are allowed to cause stress on cells, ultimately leading to cell death. Indeed, many anti-cancer drugs operate similarly, but sometimes with severe side-effects due to stress on healthy cells.

In the new study, Kato's team compared the effects of curcumin and PGV-1 on cancer, finding that they shared many of the same properties, but that PGV-1 did so at higher efficiency and lower dose.

"We found that PGV-1 arrests cells in the cell cycle at M phase" and that "it inhibits many ROS-metabolic enzymes," says Kato.

This arrest prevents the cancer cells from dividing, and the enzyme inhibition causes the cancer cells to die.

Intriguingly, PGV-1 was effective on numerous types of cancers. Moreover, when administered to mice injected with human cancer cells, the mice showed no evidence of the cancer and no side-effects. Furthermore, unlike some other anti-cancer drugs, the anti-cancer effects persisted even after the cessation of PGV-1 administration.

"Our results suggest that PGV-1 inhibits the enzyme activity more effectively in cancer cells than in normal cells. This may be the reason why PGV-1 selectively suppresses tumor cell proliferation with few effects on normal cells," notes Kato.

Scientists have long looked at the potential of curcumin to treat cancer. Kato believes PGV-1 could provide a breakthrough.

"Considering the high drug efficacy and low amount of side effects in animals, we propose that PGV-1 should be pharmaceutically developed as an orally administered drug for cancer," he says.

Reference:  Lestari, et al. (2019) Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Scientific Reports DOI:  10.1038/s41598-019-51244-3 

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement