We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Weight Loss Drug Tested in Mice May Be More Effective Than Existing Medicines

A fork wrapped in a tape measure.
Credit: Diana Polekhina / Unsplash.
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 4 minutes

“I consider the drugs available on the marked today as the first generation of weight-loss drugs. Now we have developed a new type of weight-loss drug that affects the plasticity of the brain and appears to be highly effective.”


So says Associate Professor and Group Leader Christoffer Clemmensen, from the Novo Nordisk Foundation Center for Basic Metabolic Research at the University of Copenhagen, who is senior author of the new study, which has been published in the prestigious scientific journal Nature.


In the study, Christoffer Clemmensen and colleagues demonstrate a new use of the weight loss hormone GLP-1. GLP-1 can be used as a ‘Trojan Horse’ to smuggle a specific molecule into the brain of mice, where it successfully affects the plasticity of the brain and results in weight loss.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

The brain defends excessive body weight

Christoffer Clemmensen and colleagues developed an interest in molecules that are used to treat chronic depression and Alzheimer’s disease.


The molecules block a receptor protein called the NMDA receptor, which play a key role in long-term changes in brain connections and have received scientific attention within fields of learning and memory. Drugs targeting these receptors will strengthen and/or weaken specific nerve connections.

This is a completely new approach for delivering drugs to specific parts of the brain. So, I hope our research can pave the way for a whole new class of drugs for treating conditions like neurodegenerative diseases or psychiatric disorders.”

Associate Professor Christoffer Clemmensen

“This family of molecules can have a permanent effect on the brain. Studies have demonstrated that even a relative infrequent treatment can lead to persistent changes to the brain pathologies. We also see molecular signatures of neuroplasticity in our work, but in this case in the context of weight loss,” he explains.


The human body has evolved to protect a certain body weight and fat mass. From an evolutionary perspective, this has probably been to our advantage, as it means that we have been able to survive periods of food scarcity. Today, food scarcity is not a problem in large parts of the world, where an increasing part of the population suffers from obesity.


“Today, more than one billion people worldwide have a BMI of 30 or more. This makes it increasingly relevant to develop drugs to aid this disease, and which can help the organism to sustain a lower weight. This topic is something we invest a lot of energy in researching,” says Christoffer Clemmensen.

A Trojan Horse smuggles small molecule modulators of neuroplasticity into appetite-regulating neurons

We know that drugs based on the intestinal hormone GLP-1 effectively target the part of the brain that is key to weight loss, namely the appetite control centre.


“What is spectacular – on a cellular level – about this new drug is the fact that it combines GLP-1 and molecules that block the NMDA receptor. It exploits GLP-1 as a Trojan Horse to smuggle these small molecules exclusively into the neurons that affect appetite control. Without GLP-1, the molecules that target the NMDA receptor would affect the entire brain and thus be non-specific,” says Postdoc Jonas Petersen from the Clemmensen Group, who is the first author on the study and the chemist who synthesized the molecules.


Non-specific drugs are often associated with severe side effects, which has previously been seen in drugs for treating different neurobiological conditions.


“A lot of brain disorders are difficult to treat, because the drugs need to cross the so-called blood-brain barrier. Whereas large molecules like peptides and proteins generally have difficulties accessing the brain, many small molecules have unlimited access to the entire brain. We have used the GLP-1 peptide’s specific access to the appetite control centre in the brain to deliver one of these otherwise non-specific substances to this region only,” Christoffer Clemmensen says and adds:


“In this study, we have focused on obesity and weight loss, but in fact this is a completely new approach for delivering drugs to specific parts of the brain. So, I hope our research can pave the way for a whole new class of drugs for treating conditions like neurodegenerative diseases or psychiatric disorders.”


Reference: Petersen J, Ludwig MQ, Juozaityte V, et al. GLP-1-directed NMDA receptor antagonism for obesity treatment. Nature. 2024. doi: 10.1038/s41586-024-07419-8


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source. Our press release publishing policy can be accessed here.