We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Yale Researchers Trick Bacteria to Deliver a Safer Vaccine
News

Yale Researchers Trick Bacteria to Deliver a Safer Vaccine

Yale Researchers Trick Bacteria to Deliver a Safer Vaccine
News

Yale Researchers Trick Bacteria to Deliver a Safer Vaccine

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Yale Researchers Trick Bacteria to Deliver a Safer Vaccine"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

The findings suggest new ways to create novel vaccines that effectively combat disease but can be tolerated by children, the elderly, and the immune-compromised who might be harmed by live vaccines.

“We have managed to assemble a functional protein-injection machine within bacterial mini-cells, and the amazing thing is that it works,” said Jorge Galan, senior author of the paper and the Lucille P. Markey Professor of Microbial Pathogenesis and chair of the Section of Microbial Pathogenesis at Yale.

Galan’s team has assembled the molecular machine used by Salmonella to cause food poisoning or typhoid fever. Scientists have been successful in modifying this protein injection machine to trigger a protective immune response against a variety of infectious diseases. However, it has been necessary to use modified or virulence-attenuated bacteria that carry this machine.

The new trick exploits a mutation that causes bacteria to create “mini-cells” when they improperly divide. Mini-cells contain no DNA and, therefore, are not pathogenic and extremely safe. Galan’s team was able to assemble the protein-injection machines within these bacterial cells, which when administered to mice, deliver antigens that trigger an immune response without causing an infection.

The system could be used to combat cancer as well as a wide variety of infectious diseases, Galan said.

Heather A. Carleton is lead author of the paper. Other Yale authors include Maria Lara-Tejero and Xiaoyun Liu.

The research was funded by the National Institutes of Health.

Advertisement