We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Functional Cell Profiling of Endogenous GPCRs using the xCELLigence System

Want a FREE PDF version of This Product News?

Complete the form below and we will email you a PDF version of "Functional Cell Profiling of Endogenous GPCRs using the xCELLigence System"

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

There are ~800 predicted members of this class in the human genome, involved in diverse signaling pathways in a wide array of cells and tissue types. Modulation of GPCR function has proven to have therapeutic benefit in a wide variety of diseases in immunology, neurology, cardiology, and oncology.

Roche Applied Science (SIX: RO, ROG; OTCQX: RHHBY) partnered with ATCC to research real-time endogenous GPCR function using the xCELLigence System from Roche and cells from ATCC. Cells are seeded onto plates containing microelectrodes, allowing precise measurement of subtle changes in cytoskeletal structure and cellular contraction induced by GPCR activation without using exogenous labels. GPCRs transmit extracellular signals by binding coupled guanine nucleotide-binding proteins, or G proteins, in the cytoplasm. The major second messenger pathways coupled to G proteins include cyclic AMP/protein kinase A, calcium/phospholipase C, beta-arrestin/MAPK and the Rho family GTPases, all of which can result in morphological changes easily detected by cellular impedance recording.

In contrast to traditional assays that use engineered cell lines, morphological impedance-based measurements can capture the aggregate effect of multiple signaling pathways. The advantages of assaying endogenous GPCR function include assessing the target receptor at its normal expression level; analyzing the natural interaction of receptors with regulatory partners including homo- or heterodimers; and permitting the native coupling to intracellular G proteins. Use of label-free assay systems also significantly reduces reagent costs, because a single assay can measure all the second messenger pathways a given GPCR activates. Impedance-based real-time kinetic recordings can thus detect all the GPCR responses during the course of the experiment.

In a recent study (1), the xCELLigence System proved to be a sensitive and robust assay for continually measuring endogenous GPCR function. Control GPCR agonists produced large morphological responses with high sensitivity (by IC50 value determination) and excellent robustness (by Z factor determination). A panel of 43 ligands encompassing 24 therapeutically relevant receptor families was examined. Functional GPCR profiles were created for the frequently used and therapeutically relevant cell lines, HeLa, U-2 OS, SH-SY5Y and CHO-K1 (ATCC CCL-2, HTB-96, CRL-2266 and CCL-61), as well as two primary cell types, human vascular endothelial cells (ATCC  PCS-100-010) and mixed renal primary epithelial cells (ATC C  PCS-400-012).