We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
InSphero and Yokogawa Enter into Partnership Agreement to Support Drug Development Research
Product News

InSphero and Yokogawa Enter into Partnership Agreement to Support Drug Development Research

InSphero and Yokogawa Enter into Partnership Agreement to Support Drug Development Research
Product News

InSphero and Yokogawa Enter into Partnership Agreement to Support Drug Development Research

Credit: Danilo-Alvesd/ Unsplash

Want a FREE PDF version of This Product News?

Complete the form below and we will email you a PDF version of "InSphero and Yokogawa Enter into Partnership Agreement to Support Drug Development Research"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

InSphero AG, today announced that it has entered into a partnership agreement with Yokogawa Electric Corporation (Tokyo:6841) to establish and advance high content imaging and analysis (HCA) in drug discovery and safety. The two companies aim to promote and support the use of innovative HCA solutions with 3D in vitro models.

“Over the past few years, 3D in vitro models have clearly become the gold standard for drug discovery applications,” says InSphero CEO and Co-Founder Jan Lichtenberg, PhD. “Our portfolio of 3D InSight™ discovery and safety platforms provide several key advantages over 2D and animal models for research teams seeking more human cell-based models.” InSphero specializes in perfecting and customizing complex, multicellular 3D spheroid models with the physiologically relevant morphological characteristics, cellular complexity, and longevity in culture required to mimic clinical response to drug treatments. The company’s Akura™ plate and organ-on-a-chip technology is precisely engineered for imaging and automation across a broad range of experimental formats, from high content screening to multi-tissue networks. “We found the perfect HCA partner in Yokogawa to help us optimize our use of 3D imaging instrumentation and software—and leverage their exceptional suite of tools for high-quality 3D imaging for live cell analysis,” says Lichtenberg.

Yokogawa’s CellVoyager high-throughput screening system series is equipped with the company’s confocal scanner unit (CSU), which scans cells at high speed, enabling high-resolution 3D imaging for screening of candidate compounds. Furthermore, the deep learning function of the CellPathfinder high-content analysis software, enables complex image analysis techniques such as phenotypic analysis. This partnership will enable InSphero and Yokogawa to advance the use of HCA technology and methodologies and thereby address the growing demand for innovative HCA solutions for drug discovery and disease research.

Hiroshi Nakao, a Yokogawa Vice President and head of the company’s Life Innovation Business Headquarters, says, “As one of our three long-term sustainability targets for the year 2050, we are working to ensure the well-being of all people. Through this partnership, we will be able to provide seamless services ranging from the construction of high-quality 3D in vitro models to complex analyses, thereby contributing to the improvement of screening technologies and the speed of drug discovery.”

As part of this partnership agreement, InSphero has begun using Yokogawa’s CQ1 confocal quantitative image cytometer in their research laboratory. The companies have already collaborated on several joint presentations, and co-authored a publication in the scientific journal SLAS Discovery that presented a framework for optimizing high content imaging of 3D models for drug discovery.

Advertisement