We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

m2p-labs Receives Grant for New Fed-Batch Screening Technology

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

The Federal Ministry of Education and Research (BMBF) sponsors the “Smart Dosing” project for the development of intelligent disposables with 900,000 Euros.

The project of the companies,m2p-labs GmbH and CEVEC Pharmaceuticals GmbH as well as the Chair of Biochemical Engineering (Prof. Dr. Jochen Büchs) and the Institute of Technical and Macromolecular Chemistry (Prof. Dr. Andrij Pich) of RWTH Aachen University is sponsored within the framework of the BMBF funding programme “KMU-innovativ: Biotechnologie-Bio Chance” and is spread over three years.

A passive fed-batch technology for targeted limited substrate feeding of cells is to be developed within the scope of this project.

The aim of the project is to make the fed-batch process control, which is proven and frequently used in the industry, already available during screening and the early bioprocess development.

This guarantees that the selection of the best producers and process conditions is carried out under process-simulated conditions, and hence, any wrong decision making is avoided in the early development stage.

Within the scope of this project, the technology, already patented by Prof. Dr. Jochen Büchs and purchased by m2p-labs, is basically to be designed for microbiological, animal and human cell lines.

The participation of CEVEC Pharmaceuticals GmbH guarantees the testing of the technology and their scalability with the highly potent human CAP cells.

This cell line promises high product titres and authentic glycosylation especially for complex glycosylated pharmaceutical proteins.

Microbiological expression systems such as bacteria or yeasts are tested with the new fed-batch technology and their ability to be scaled up to standard fermenter is checked by m2p-labs and the Chair of Biochemical Engineering.

For m2p-labs, inclusion of this project represents a consistent advancement in the development of its product portfolio. The fed-batch technology to be newly developed can be integrated excellently in the Flowerplate® and CellCulture Plate already being marketed.

“If we succeed in establishing the fed-batch control with any substrates in our microtitre plates with the help of the new project, we will demonstrate our technological market leadership once again”, describes Dr. Frank Kensy, Managing Director of von m2p-labs, as the opportunities of this project.

Dr. Kensy continued, “This new technology represents yet another milestone in the development of m2p-labs. We provide intelligent tools to our clients in biotechnological, chemical and pharmaceutical laboratories”.

“We are very happy about our participation in this project and the very early access to innovative fermentation technology”, comments Dr. Gudrun Schiedner, CSO of CEVEC Pharmaceuticals, about the participation in this project. “In particular, the testing of our human CAP clones in micro-scales is very promising and spares us the cumbersome effort with shake flasks and fermenters.”

The combination of the different m2p-labs technologies - namely the BioLector®, the Flowerplate® or CellCulture Plate and the RoboLector - facilitates the handling of screening approaches by biotechnological users or high-throughput fermentations.

48 parallel fermentations can be carried out in the BioLector without much effort. The user gains insight into the course of fermentation during the experiments with the online monitoring of important parameters such as biomass concentration, pH and pO2values. Those engaged in fundamental research can even observe the expression of fluorescent proteins online.