We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience, read our Cookie Policy

Design, Validation and Evaluation of a Bioaffinity based Flow-biochemistry Device

Video   Jun 01, 2016

 

About the Speaker
András Guttman holds the Translational Glycomics Professorship at the Horváth Csaba Laboratory of Bioseparation Sciences (University of Debrecen, Hungary) and leads the application efforts at Sciex (Brea, CA) and. His work is focusing on capillary electrophoresis and CE-MS based proteomics and glycomics analysis of biopharmaceutical, biomedical and cell biology interests. Dr Guttman previously held academic appointments at Northeastern University (Boston, MA) and a Marie Curie Chair at University of Innsbruck (Austria) as well as industrial positions at Novartis (La Jolla, CA), Genetic BioSystems (San Diego, CA), and Beckman Instruments (Fullerton, CA), developing high resolution capillary electrophoresis and microfluidics based separation methods. Professor Guttman has more than 269 scientific publications, wrote 35 book chapters, edited 4 textbooks and holds 19 patents. Until recently he served on the CASSS Board and as president of the Hungarian Chapter of the American Chemical Society. He is on the editorial boards of numerous international scientific journals. Dr. Guttman graduated from University of Veszprem, Hungary in chemical engineering, where he also received his doctoral degree. He was recognized by the Analytical Chemistry Award of the Hungarian Chemical Society in 2000, elected as a member of the Hungarian Academy of Sciences in 2004, named as Fulbright Scholar in 2012, received the CASSS CE Pharm Award in 2013, the Arany Janos medal of the Hungarian Academy of Sciences, the Pro Scientia award of the University and the Dennis Gabor Award of the Novofer Foundation in 2014.
AbstractFlow-biochemistry utilizes continuous flow biochemical devices for biocatalysis, biotransformation and biochemical interaction based flow-analytical systems. Design of flow-biochemistry based rare cell capture systems was supported by computational fluid dynamics modeling. Trajectories of yeast cell movement were followed under a microscope and compared with the modeling results. Melanoma cells were used to evaluate the efficiency of the cell capture capability of the bioaffinity based flow-biochemistry microdevice.

 
 
 
 

Recommended Videos

Operetta CLS High-Content Analysis System

Video

The Operetta CLS system is part of PerkinElmer's comprehensive HCS portfolio – from HCS systems and microplates to automation and informatics.

WATCH NOW

ULTImate YChemH: a powerful tool for drug target deconvolution

Video

What if I told you Hybrigenics Services can help you make the right decisions and optimize the success rate of your drug discovery and development programs?
Watch how with our animation video and discover our optimized ULTImate YChemH technology for drug target deconvolution.

WATCH NOW

Challenges & Solutions in Today's In Vitro Transporter Research Landscape

Video

Key concepts discussed in this webinar included: - Ramifications of recent FDA in vitro DDI guidance changes to transporter study designs - Challenges from diverse compounds in otherwise straightforward assays - Solutions to problems associated with specific compound characteristics - Case studies of problematic observations or data and the creative methods of troubleshooting applied

WATCH NOW

 

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE