Tumour Regression after Intravenous Administration of Novel Tumour-targeted Nanomedicines

Video   Jul 22, 2014

 

About the Speaker

Christine Dufès is a Senior Lecturer at the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow (United Kingdom). She obtained a Doctorate in Pharmacy (with Distinction and congratulations of the Jury) and a PhD (with a European Label, Distinction and congratulations of the Jury) from the University of Poitiers (France). After four years as a post-doctoral researcher at the Cancer Research UK Beatson Laboratories in Glasgow, she was appointed as a Lecturer at the Strathclyde Institute of Pharmacy and Biomedical Sciences in 2006 and became a Senior Lecturer in 2012. Abstract

The possibility of using genes as medicines to treat cancer is limited by the lack of safe and efficacious delivery systems able to deliver therapeutic genes selectively to tumours by intravenous administration, without secondary effects to healthy tissues. In order to remediate to this problem, we investigated if the conjugation of the polypropylenimine dendrimer to transferrin, whose receptors are overexpressed on numerous cancers, could result in a selective gene delivery to tumours after intravenous administration, leading to an increased therapeutic efficacy. The objectives of this study are to evaluate the targeting and therapeutic efficacies of a novel transferrin-bearing polypropylenimine dendrimer. The intravenous administration of transferrin-bearing polypropylenimine polyplex resulted in gene expression mainly in the tumours. Consequently, the intravenous administration of the delivery system complexed to a therapeutic DNA encoding TNF led to a rapid and sustained tumour regression over one month (90% complete response, 10% partial response on A431 human epidermoid tumours). It also resulted in tumour suppression for 60% of PC-3 and 50% of DU145 prostate tumours. The treatment was well tolerated by the animals, with no apparent signs of toxicity. Transferrin-bearing polypropylenimine is therefore a highly promising delivery system for cancer therapy.

 
 
 
 

Recommended Videos

LeNeo - Fusion Instrument

Video

LeNeo fusion instrument is an automatic and single position electrical instrument that prepares glass disks for XRF as well as solutions (borate and peroxide) for AA and ICP analysis.

WATCH NOW

Immunology Wars: The Role of Monoclonal Antibodies

Video

Our immune systems are at war with cancer. This animation reveals how monoclonal antibodies can act as valuable reinforcements to shore up our defences – and help battle cancer.

WATCH NOW

Biggest Science News Stories of 2017

Video

We have seen some amazing scientific breakthroughs in 2017, here is a selection of our favourites.

WATCH NOW

 

Comments | 0 ADD COMMENT

Like what you just watched? You can find similar content on the communities below.

Cancer Research Genomics Research

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE