We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


Exploring Genetic Variation and COVID-19 Clinical Variability

Exploring Genetic Variation and COVID-19 Clinical Variability content piece image
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 3 minutes

One of the biggest challenges that scientists and healthcare professionals are facing during the COVID-19 pandemic is the high rate of clinical variability. Whilst some patients present as asymptomatic, others are developing more severe symptoms such as pneumonia, and some cases are ultimately proving fatal. Why?

The answer remains elusive; however, extensive research is exploring the possible contribution our genetics may be having. Genetic variation – differences in the DNA sequences that make up our genome – can impact our response to infectious diseases.

GoodCell uniquely measures and monitors inherited and acquired genetic variations in stem cells and other nucleated cells in our blood over time. Technology Networks recently spoke with Dr Salvatore Viscomi, chief medical officer at GoodCell, and attending physical at Baystate Health, to explore factors that might influence COVID-19 risk, and to discuss how the company is working to identify at-risk individuals through genetic variation analysis. 

Molly Campbell (MC): For our readers that may be unfamiliar, can you discuss why medicine is moving towards a personalized approach, and why this is important considering genetic variation?

Salvatore Viscomi (SV):
Healthcare has traditionally taken the approach of “one size fits all” in defining individual risk for a disease and prescribing therapy for it. Understanding the differences between individuals on a molecular level optimizes assessment of an individual’s susceptibility to a certain disease and predicting response to pharmacological therapy. Genomics plays the most important role in the emergence of personalized therapy. Identifying the inherited and acquired genetic variation will direct personalized screening and prevention plans and inform bespoke medical therapies.

MC: We know that there is high clinical variability across COVID-19 patients. How might genetic variation be contributing here, and what published evidence exists to support this?

Understanding immune response is critical to identifying individuals at high risk of severe morbidity and mortality. Emerging research suggests that accumulated genetic variation in our blood cells may be associated with a dysfunctional inflammatory response to COVID-19 leading to its pulmonary, cardiac and coagulopathic complications.

In a recent study published by JAMA Cardiology, researchers demonstrated an association between the presence of accumulated genetic change in our blood cells and a pro-inflammatory immune response that resembles the exaggerated cytokine release syndrome (CRS) manifested in COVID-19-positive patients. Direct evidence has emerged more recently; a study published in Cancers examined patients hospitalized with COVID-19 and found a significantly higher prevalence of accumulated genetic variation in all age groups compared to age-matched control groups.

MC: What impact might genetic variation in COVID-19 patients have on efforts to develop therapeutics or preventives, such as vaccines?

Identifying highly susceptible individuals through blood testing could have many applications. As an initial wave of vaccines move through Phase III trials and potentially come to market, we would have the data to determine prioritization of vaccinations when one is available. Business and government sectors need insight into risk factors that can inform inoculation strategies for society’s most vulnerable, inform decisions around who should and should not be on the front lines, and give people more control when making personal decisions about how to mitigate individual risk. The broader field of genetics offers a window into the potential to correlate inherited and acquired gene mutations with immune response for the betterment of society, providing a more robust and accurate set of risk factors unique to every individual.

Furthermore, in high-risk individuals, ​targeting inflammation may be a clinical strategy to mitigate its clinical consequences ​in COVID-19. For example, we may identify patients who are most responsive to pro-inflammatory inhibitors. Implementing measures intended to reduce subjects’ exposure to the infection or likelihood of contracting such infection – through self-isolation, quarantine or social distancing – may be advised.

MC: Can you explain the aims of GoodCell, and what the company does in terms of "banking blood for life"?

GoodCell’s mission is to extend and improve the quality of life through technology powered by our own cells.​ Blood is the author of our bodies, and can both cure as well as cause disease. Through our proprietary data aggregation and analytics technology platform, which aims to decode our blood cells and harness their insights to advance population and personal health, we empower individuals to identify, track and mitigate health risks. By getting ahead of their health risks, we enable the potential for a better life. In addition, through our personal biobanking service, long-term storage of your healthiest cells provides the opportunity for potential use in future therapeutics if you need them – you are your best donor.

MC: Does GoodCell measure other "omics" parameters outside of genomics (DNA measurements and analysis), such as proteomics or metabolomics?

GoodCell’s platform leverages the power of blood to assess risk – as such, we of course look at acquired and inherited genetic changes, but there are many more opportunities afforded by blood to understand and assess risk including routine blood chemistry tests, tests for biomarkers of disease, including emerging capabilities in liquid biopsy for earlier detection of solid tumor cancers. Ultimately, we are always looking to incorporate novel health and data insights into our product platform to better inform both an individual’s health, as well as population-based health. Transcriptomics, epigenomics and metabolomics are but a few of the opportunities we are evaluating.

MC: What work is GoodCell currently conducting in the COVID-19 space?

GoodCell is currently engaged in a research collaboration with the New York Blood Center to evaluate how specific acquired and inherited genetic variation contribute to COVID-19 severity and recovery. We are analyzing genetic variation in asymptomatic/mildly symptomatic patients compared to hospitalized/ICU patients. GoodCell will evaluate the genetic variation in the collected samples using our proprietary assay platform to identify and validate their association with COVID-19 morbidity and mortality.

Salvatore Viscomi was speaking to Molly Campbell, Science Writer, Technology Networks.