siRNA Screening: Development of Hit Stratification Strategies

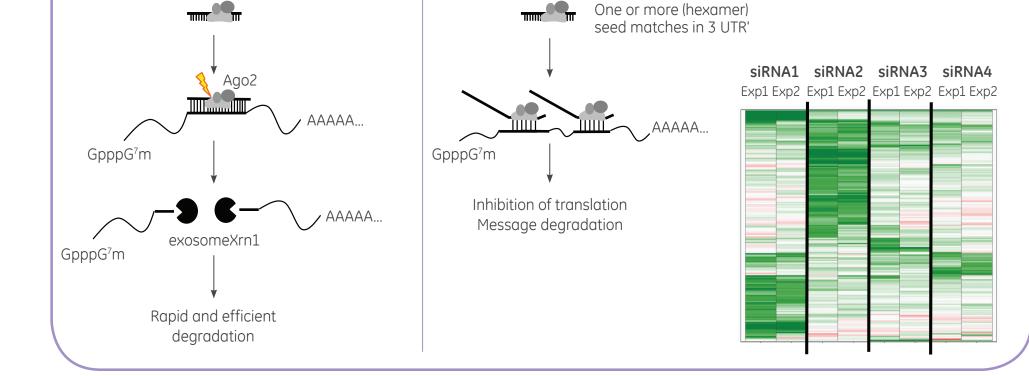
Žaklina Strezoska, Annaleen Vermeulen, Emily M. Anderson, Anja Smith, Devin Leake Dharmacon, now part of GE Healthcare, 2650 Crescent Drive, Suite #100, Lafayette, CO 80026, USA

Introduction	Standard and specificity-enhanced pools have comparable silencing	Low-confidence hits are due to seed-mediated off-target effects
While synthetic siRNA libraries are powerful tools for functional genomic screens, off- target effects mediated by siRNA seed interactions with the 3' UTR of unintended targets can result in false positives. Given the frequency of off-target effects in some assays, the development of hit validation/stratification strategies is imperative. In the following study we have compared two strategies for identification of high confidence hits: 1) a multiple reagent approach where two or more individual siRNAs induce the same phenotype and 2) a chemical modification approach where hit confirmation is achieved using pools of siRNA that contain specificity enhancing modifications. A comparison of these two strategies (using a collection of primary hits generated from a cell viability screen) reveals significant overlap between the high confidence hits identified. However, for low confidence hits, <i>i.e.</i> where a single siRNA induces a phenotype, the concern is that an important hit will be missed. To determine if the phenotype is due to gene targeting or a seed-mediated off-target effect, a chimeric approach was used whereby a gene-specific seed sequence is introduced into a non-targeting siRNA scaffold. Together, these data provide well-defined approaches for prioritization of hits derived from RNAi screens.	Standard siRNA pool Specificity enhanced	Positive siRNA Seed control Seed control S

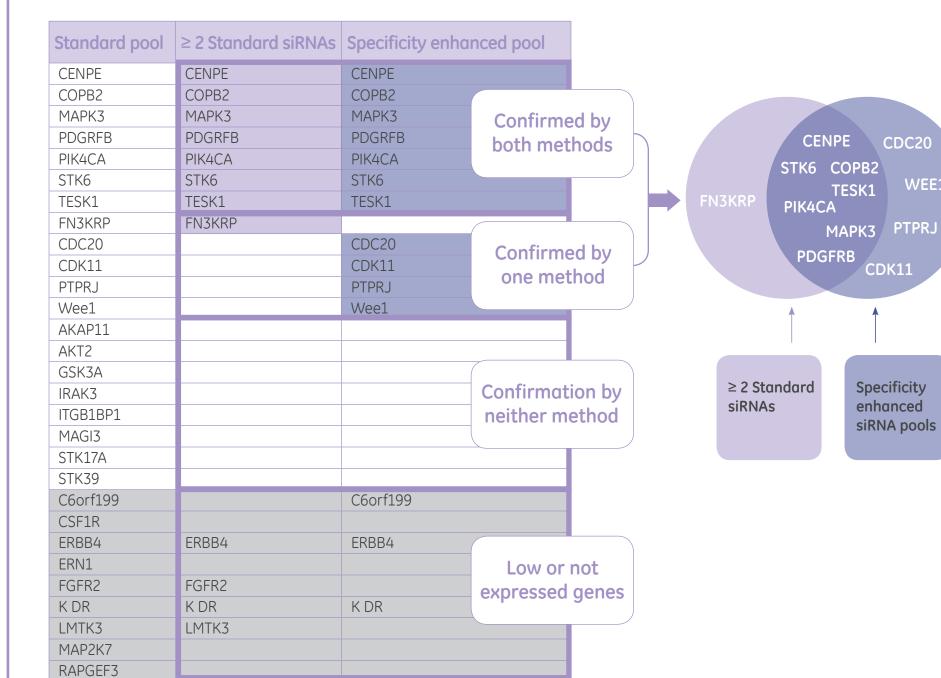
siRNA screening workflow

RNAi screens typically result	Assay development	Current Practices
in a large number of hits. Distinguishing between true hits and false positives due to off targets is a crucial task in first line hit validation.	Screening Hit identification Hit validation/Hit stratification In-depth target validation	Redundancy: Confirmation of hits with multiple reagents Rescue: Exogenous target expression reverses the phenotype

The target mRNA knockdown was compared between the standard and specificityenhanced siRNA pools. Statistically significant silencing differences, p<0.01 (*Specificity enhanced pool better, # Standard pool better)


Deconvolution of the standard siRNA pool vs. specificity enhanced pool

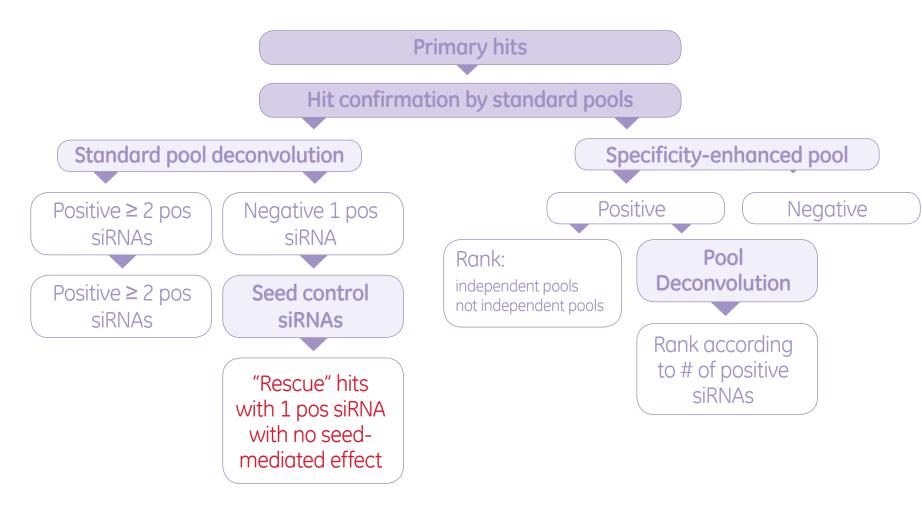
Mechanism of RNAi-mediated effects


RNAi can lead to both specific target mRNA down-regulation and nonspecific off-target effects due to partial complementarity with unintended mRNAs through seed region matches to the 3' UTR. Typical results of microarray expression analysis is shown below.

ππ

Strategies for reducing off-targeting

High confidence hits \rightarrow There is significant overlap between the hits that are confirmed by the two validation methods (\geq 2 siRNA and specificity-enhanced pools).


Low confidence hits potential false positives) \rightarrow Majority of hits with only one positive standard siRNA are not confirmed by specificity enhanced pools.

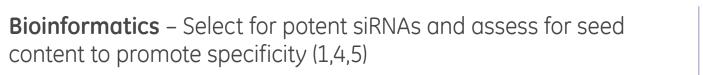
Low confidence hits (potential false positives) \rightarrow A number of hits are either not

hits. CENPE is a high confidence hit used as a control with no seed-mediated off-targeting.

phenotype. There was no seed-mediated effects on phenotype for the tested ambiauous

Proposed hit stratification strategies

Follow up of candidate targets form primary screens with either deconvolution of standard pools or specificity-enhanced pools are equally viable approaches to prioritize potential targets based on confidence level.


High priority hits are identified by both methods

Low priority hits are negative by both methods

A few hits are ambiguous and confirmed by one or the other method

Seed-matched controls reveal that where only one siRNA produces the phenotype, often this is due to seed-mediated off targeting.

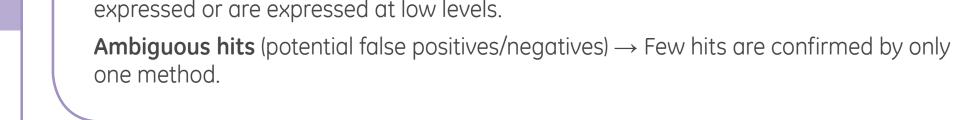
Seed-matched controls are important tools for ruling out seed-mediated off-target events during the hit stratification process.

Chemical modifications – Expand sequence space enabling potent siRNA sequence selection and interfere with off-target mechanism (2)

Pooling – Promote competition between potent siRNAs for optimal silencing and dilution of off-targets associated with individual siRNAs (3)

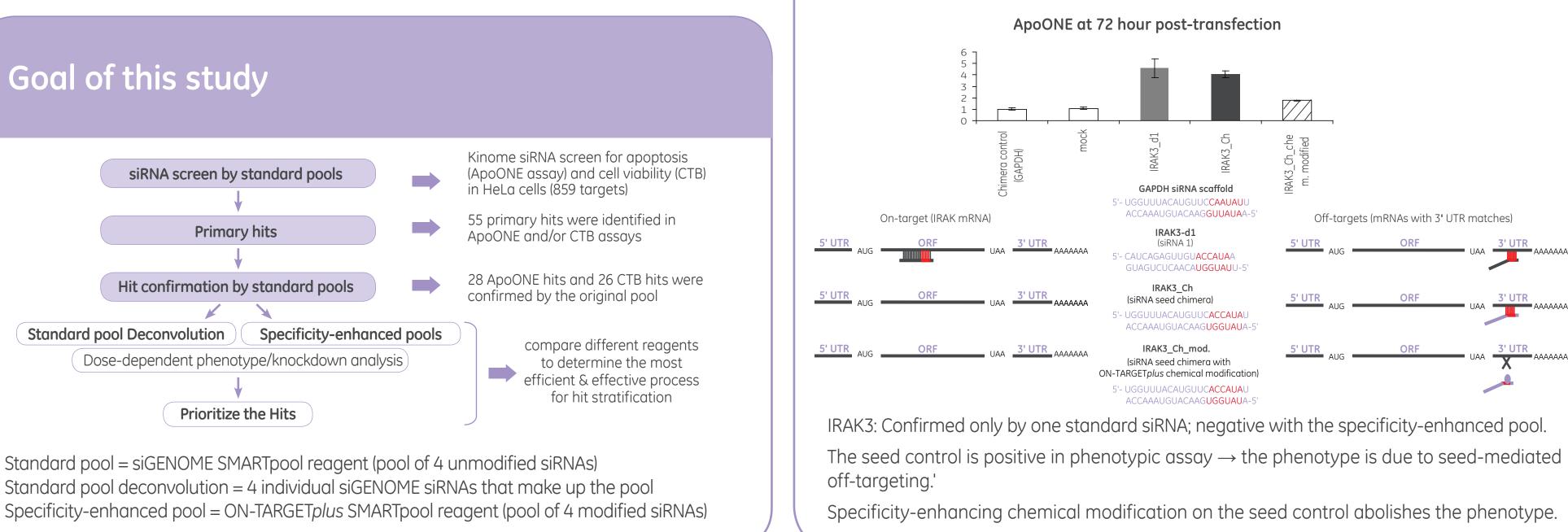
Specificity – enhanced pools are ON-TARGET*plus*[™], SMARTpool[™], siRNA reagents, standard siRNA and pools are siGENOME SMARTpool and individual siRNA reagents

siRNA screen by standard pools


Primary hits

Hit confirmation by standard pools

Prioritize the Hits


Goal of this study

Standard pool Deconvolution

Seed controls for ruling out false negatives

A seed control is a chimeric siRNA that contains the 6 nucleotide seed sequence from the standard siRNA in a GAPDH siRNA scaffold that does not induce the phenotype (5).

1. A. Reynolds, et al., Rational siRNA design for RNA interference. Nat. Biotechnol., 22(3), 326-30 (2004).

- 2. A.L. Jackson, *et al.*, Position-specific chemical modification increases specificity of siRNA-mediated gene silencing. RNA. 12.7,1197-1205 (2006).
- 3. K.J. Simpson, *et al.*, Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat. Cell. Biol. 10, 1027-1038 (2008).
- 4. A. Birmingham, et al., 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets., Nat. Methods. 3.3, 199-204 (2006).
- 5. E. Anderson, et al., Experimental validation of the importance of seed frequency to siRNA specificity. RNA. 14.5 (2008).

Acknowledgements

Special thanks to the R&D and production team at the Dharmacon site, now part of GE Healthcare, and the members of the RNAi Global Initative.

gelifesciences.com/dharmacon

Dharmacon[™] part of GE Healthcare

