High-throughput analysis of protein formulations by DLS: thermal stability, colloidal stability and a thermal anomaly in the colloidal stability parameter D₁

Sophia Kenrick and Daniel Some, Wyatt Technology Corporation

1. Introduction

High-Throughput Screening by Dynamic Light Scattering (HTS-DLS) is a versatile tool for characterizing various aspects of protein

stability in parallel:

- Thermal / conformational stability $(T_{\mathsf{M}}, T_{\mathsf{onset}})$
- Colloidal stability $(D_1 \text{ or } k_D)^*$
- Actual aggregation state

• 0.47 mg/mL

• 0.94 mg/mL

 D_1 undergoes a dramatic, previously unobserved modulation around the thermal transitions.

Changes to in D_1 are observable several degrees earlier than T_{onset} . We speculate that this reflects an unfolding transition.

*we prefer 'D₁' to 'k_D' in order to avoid confusion with other 'K-D' meanings and to open a pathway to higher-order terms.

2. Model System

mAb1

- pl = 8.9 by electrophoretic light scattering (Möbius[®], Wyatt Technology)
- $R_H : 4.7-4.8 \text{ nm at } 25^{\circ}C, c \rightarrow 0$
- pH conditions: 8.5 $(Z_{DHH}=4)$, 9.5 $(Z_{DHH}=-2)$
- Concentrations: 0.47, 0.94, 1.88, 3.75, 7.5, 15 mg/mL
- 3 replicates per pH & concentration
- Wells capped with silicone oil
- Measured every 0.5°C over 25°C 85°C

3. Analysis

 D_1 is determined from the concentration dependence of D_m :

$$D_{\rm m} = D_0 (1 + D_1 c + D_2 c^2 + ...)$$

 D_1 is closely related to the second virial coefficient A_2 (B_{22}) and is an indicator of colloidal interactions.

HTS-DLS of $T_{\rm M}/T_{\rm onset}$, D_1 and aggregation size distributions under multiple formulation buffer conditions, can be accomplished simultaneously in situ in standard low-volume microtiter plates with a DynaPro® Plate Reader II.

All parameters determined from cumulants.

Degree of aggregation depends on

concentration

4. DynaPro® Plate Reader II

- Standard 96, 384 or 1536 microwell plates
- Sample stays in wells no carryover
- Measurement time = 4-10 s/well, typical
- Temperature ramps 4-85C
- Camera for troubleshooting bad data

5. Thermal Stability

▲ 1.88 mg/mL

3.75 mg/mL

∘ 7.5 mg/mL

pH 9.5 • ~55C (0.47 mg/mL)

6. Aggregation States

- HTS-DLS indicates vastly different aggregation states, not expected to be identified by DSC or DSF signal loss
- Does form of D₁(T) point to aggregation pathway?

8. Colloidal Parameter D₁

15 mg/mL

pH 9.5 • $D_1(T)$ – negative peak at $T_{\text{onset}}!$ 'Stabilizes' transition ~75°C

transition true interaction between aggregates consequence aggregation?

9. Conclusions & Future Studies

High-throughput analysis by the DynaPro DLS plate reader provides parallel analysis of multiple stability-indicating parameters for screening of developability and optimal formulations.

A novel indicator, $D_1(T)$, provides new insights into the **interplay** of colloidal and conformational stability. The form of $D_1(T)$ may point to aggregation mechanisms and rate-limiting parameters.

Better understanding of the significance of $D_1(T)$ will require further study including tests of reversibility.

The nature of $D_1(T)$ above the transition may be further elucidated by a dilution series performed on aggregated samples in the context of HTS-DLS.