LEARNING OBJECTIVES

Pictorial review of clinical features of major adrenal benign and malignant lesions characteristics in FDG PET/CT.
2. Tabular review of general guidelines for adrenal lesions to assist benign versus malignant determination.

INTRODUCTION

Between $2-7 \%$ of patients have incidental adrenal masses on imaging studies in the general population. Most of these incidental adrenal lesions are benign non-hyper functioning adenomas that require no adenomas that require no
treatment. On FDG PET/CT the treatment. On FDG PET/CT the
incidence of malignant adrenal incidence of malignant adrenal
lesions increases due to common lesions increases due to common
metastatic spread in lung cancer, metastatic spread in lung cancer,
breast cancer, renal cell carcinoma, neuroendocrine tumors and melanoma. Determining if adrenal lesions are benign or malignant can be paramount in directing cancer paramount in directing cancer treatment to be curative or palliative. We selected FDG
PET/CT cases with strong key PET/CT cases with strong key
representative findings to help representative findings to help
illustrate benign and malignant illustrate benign and malignant adrenal lesions. Tabular review of
PET SUV values, Hounsfield PET SUV values, Hounsfield
units and lesion size in the different cases will be discussed.

CONTACT

Nicholas A. Plaxton M.D. Depart of Radiology and Imaging Sciences Division of Nuclear Medicine Email: nickplaxton@emory.edu Phone: 4047124868

Thanks to Eric Jablonowski for illustration and Dr. David Brandon for review.

ADRENAL ANATOMY

ADRENAL ADENOMA

Focal enlargement in the adrenal gland Contain varying degrees of adipose tissue - Low or negative Hounsfield units (-20 to 30) - FDG activity below liver

ADRENAL CYST

Very rare 0.01% incidence
Types (endothelial, epithelial, pseudocyst, parasitic) - 40% cysts are pseudocyst can become malignant - Hounsfield for fluid ($0-15$), no FDG activity

ADRENAL HYPERPLASIA

- Homogeneous diffusely enlarged glands

SUV equal to or slightly higher than liver SUV Hounsfield units similar to a normal adrenal gland

LYMPHOMA

Primary adrenal lymphoma is extremely rare Lymphoma involvement in adrenal glands is more common than primary adrenal lymphoma Intense FDG activity with high SUV Hounsfield units are not characteristic

PHEOCHROMOCYTOMA

Uncommon neoplasm that release
catecholamine
85\% of arise from adrenal medulla
0.1 - 0.3\% hypertension caused by
pheochromocytomas
90% occur sporadic, 10% endocrine syndromes

MIBG scan

LEIOMYOSARCOMA

Very rare malignant cancer of smooth muscle High SUV and Hounsfield not characteristic

HIT SYNDROME
Heparin Induced Thrombocytopenia is rare Can cause bilateral adrenal hemorrhage and insufficiency
Hematoma/hemorrhage Hounsfield (50-90)

MYELOLIPOMA

Benign tumor composed of mature adipose tissue and hematopoietic elements Hounsfield units (-30 to -100) Incidence $0.1 \%, 3 \%$ of all adrenal tumors

ADRENAL LIPOMA

Composed of adipose tissue (HU -50 to -100) Usually has no significant FDG activity

METASTATIC

Lung, breast, renal, ovary, lymphoma, leukemia and melanoma cancers are most common to metastasize to adrenals.
50% adrenal lesions in cancer patients are benign CT characteristics are highly variable

LUNG

Adrenal metastasis occur 1.3\% in lung cancer

BREAST
Metastasize to the lungs, liver, bones and brain but rarely to the adrenal glands.

RENAL
0.03% incidence and adrenal gland metastasis is typical site. Renal cancer SUV is variable.

GENERAL GUIDELINES

	Benign	Indeterminate	Malignant
Size	$<3 \mathrm{~cm}$	$3 \mathrm{~cm}<\&<6 \mathrm{~cm}$	$>6 \mathrm{~cm}$
Hounsfield	≤ 0	>0	variable
SUV	Less liver	Equal liver	Greater liver
Shape	Round Smooth Uniform		Irregular Heterogeneous Poorly defined

CONCLUSION

Adrenal lesions on imaging studies are common in the general public and this incidence increases in PET/CT images secondary to the oncologic patient population and frequent adrenal metastases in many cancers. Having a strong knowledge of the different characteristics of adrenal lesions on PET/CT such as sizes, Hounsfield units and SUVs, can assist in determining benign versus malignant lesions and guide the course of treatment. However, many CT characteristics of malignant adrenal lesions are variable and the advent of PET/MR imaging may better characterize adrenal lesions. The take home caveat is that adrenal lesion guidelines are not hardened rules and close follow up imaging or tissue sampling should be incorporated if suspicion remains.
References available upon request.

