MS-Xelerator ${ }^{\text {TM }}$: Advanced Algorithms for LC/MS Data Processing applied to Biomarker Discovery, Differential Analysis and Quantitative Proteomics

MS-XELERATOR OVERVIEW
LC-MS based proteomic experiments are used to compare complex biological samples across
multiple condititons. Fast, , owwerful computational tools are needed to explore and detect mulitile conditins. Fast, powerfut computiaiona tools are needed to explore
differces in the areas of Expression Proteomics and Biomarker Discovery. In general, specialized steps are necessary to solve these difificult problems (binning,
alignment \& normalization, peak picking, relative ouantitation classification etc) alignment \& normalization, peak picking, relative quantitation, classification etc.).
$M s$-Xelerator is a collection of software tools dedecicated to all of the above tasks.
MBrowser. Interactive graphical environment for LC-MS data mining.
MPeaks: Fast Peak-Picking \& Peak Fittering, Charge State Calculations, Differential
and linking of results to Mascot.
IPeaks: Quanitative Proteomics based on labelling experiments: $\mathrm{SLLAC},{ }^{18} / /^{18} \mathrm{O}$,
us Compare: Biomarker Discovery and Statistical Comparison of series or

DIFFERENTIAL ANALYSIS

Difiterential Analysis between two samples is performed after detection of all chrom atographic peaks in both samples. The applied
algorithm uses an auto-aigment procedure algorithm uses an auto-aignment procedure
to correct tor chromatographic shifts. Autoto correct tor chromatographic shifts. Au
aifnmentis i ocally applied to paiwwise detected peaks.

The figure at right shows the results of Auto
Alignment for a number of selected peaks Alignment for a number of selected peaks
(retention time versus optimal shift). Although (retention time evrsus optimal shift). Athtrough
general time-related trend can be observed, many peaks show large deviations from this
overall trend.

MPeaks Differential Result Screen. Change folds for all peaks are calculated
and visualized. The mass chromatogram and visualized. The mass chromatogram
potted displays a differential peak at a
level of 0.12%. level of 0.12%.

Peak-Picking for both files (rT-MS),
following differential analysis was fealowing dififerential analysis wa
fompleted in 45 seconds. completed in 45 seconds.

Marco M.A. Ruijken, MsMetrix, Maarssen, The Netherlands mr@msmetrix.com

BIOMARKER DISCOVERY

The MS Compare module offers multiple tools (graphically and computationally) for the detection and The MS Compare module offers multiple tools (graphically and computationally) for the detection and
eveluaution of uniuque or discriminating peakk in Biomarker Discovery. The searach can be eerformed
directy, based on full spectrum methods or by using peak detection matching algorithms. Identification of unique peaks by direct comparison of mass spectra offers the advantage that no
aignment will be neeessary. In all other cases, alignment and possibly other pre-processing steps wit part of the workflow. The data set used for this study consists of 14 serum samples: 7 controls and 7 part of the workellow. The edata set used for this stury consists of 14 serum samples: 7 controls and 7
samples spiked with a peppide caibration standard. Computation time was in the order of 2 minutes. Th average number of detected chromatographic peaks for a single sample was in the order of 10.000 .

3. Biomarker Surface Map, map shows unique eased on user defined criteria. In the example full selectivity was used. A total of of 23 unique marker
were fonnd.

5. Multivariate Analysis: PCA or Clustering
S. Mulivaniate Analysis: PCA or Cluster
provides ovenview of class separation.

QUANTITATIVE PROTEOMICS
Recently, there has been significant interest in using isotopic labeling for the quantification of peptides and proteins in biological samples. Amongt the many formats for cuantitative

 label ling or specitic labeliling reagents. In generali, labeling is tacile
interperetation of the resulting data has been dificiutt and manual.
The IPeaks module contains 4 very fast algorithms for searching labelled peaks based on mass spectra or mass chromatograms. The user may select from a number of predefined

$$
\begin{aligned}
& \text { SILAC labeling: Argo / Arg6 / Arg10 } \\
& \begin{array}{l}
\text { Simultaneous a analysis of ot three ecell populations. } \\
\text { Since the isotopic patterns will depend on charge } \\
\text { state }
\end{array} \\
& \begin{array}{l}
\text { Since the isotopic patterns will depend on charge } \\
\text { state, a fast algorithm (peak based) automatically }
\end{array} \\
& \begin{array}{l}
\text { determines charge states and subsequently } \\
\text { calculates the ratio's }(0, / 6,010 \text { and } 6101 \text {). Co }
\end{array} \\
& \begin{array}{l}
\text { calculates the ratio's (} 0 / 6,0 / 10 \text { and } 6 / 10 \text {). } \\
\text { analysis can be done in about } 1 \text { minute. }
\end{array} \\
& { }^{10} \mathrm{Co}^{20} \mathrm{O} \text { labelling: }
\end{aligned}
$$

algorithm will search for peaks having mass

