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Design of a Modularized, Intensified
Milli-Reactor for Production Scale
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Miprowa® Technology:
Continous tube-bundle like reactor with milli-scaled structures with two main design aspects:

1. Flat rectangular product channels 2. Static mixing inserts (SM) are exchangeable

Tempering Fluid
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Intensified heat exchange capacity

Miprowa® Matrix: through flow area - Forced convection over the entire reactor length
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Process Fluid

Motivation
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- Continuous dispersion of two-phase systems =N

here: Miprowa® Matrix (pilot apparatus), Ay = 18 x 3.2 mm?

Heat and Mass Transfer Experiments Residence Time Behavior

Experimental setup for heat and mass transfer experiments Experimental setup to investigate the residence time

- Measurement of in- and outlet temperatures of process and heat transfer medium - Measurement and comparison of conductivity at the in- and outlet

- Overall heat transfer coefficient calculated using the logarithmic mean temperature using a pulse tracer (NaCl) in the process medium

difference: - Mathematical treatment of the conductivity signals

- Narrow residence time distribution can be used as a measure of the
mixing quality in single-phase systems
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tracer pulse

Miprowa®

Miprowa®

flow indicator

PI: pressure indicator .

TI: temperature indicator tank FI: flow indicator
tank PM: process medium | PM PM: process medium
PM : THP CM: conductivity meter

T™: heat transfer medium : y

THP: thermostat incl. pump Tracer:  NaCl

Influence of the static mixing inserts on the overall heat transfer Influence of the static mixing inserts on the

residence time distribution
-—> Calculation of the dimensionless residence time density function E(0)

—> Calculation of the gain factor Nu/Nu, [1,2]

= Derivation of the product-side heat transfer coefficient from the overall heat resistance
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-> High flow velocities and efficient cross mixing at laminar flow

Heat transfer for different process media

— Influence of heat capacity (c,), density (p) and viscosity (n) on the overall heat transfer of
different process fluids 2000

- Mixing inserts induce significant narrowing of the residence time
density function and thus an intensification of convective heat transfer
[3,4]

Results

Cp,Wasser > Cp,Isopropanol > C p,Glycerin 1750 -

1500 +
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* For low-viscosity fluids with high

specific heat capacity the heat transfer
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—&—demineralized water
2-Propanol
—8—Glycerin 80 Vol.-%

= For a glycerin water mixture (80 Vol.-%)

experimentell overall heat transfer coefficient

Bartlett Publishers, Inc., 2009

[3] Lie et al. (1996). Hydrodynamics and heat transfer of rheologically complex fluids in a
Sulzer SMC static mixer, Chemical Engineering Science 51 (10) 1947-1955

[4] Genetti (1982): Laminar flow heat transfer with inline mixers inserts. Chem. Eng.

and Isopropanol k = 1000 W-m-2K-1

mass flow / g:min!

Commun. 14 (1) 47-57

Quick and Reliable Scale-Up

Development scale Development + pilot Production scale

scale

154 Channels
Miprowa® Production >

* Increasing the throughput by
numbering-up of the product
channels while keeping the channel
Cross section constant

= Constant heat transfer capacities
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- Use of up to 8
channels in a row
(maximal 30 mL)

- Extendable with
dosing ports or
temperature sensors

- Reactor technology with
more than 3 channels (in
a row or in parallel)
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- Reactor to validate
process parameters

- Lab or production channel
size, up to 3 channels and
2 different channel
lengths available
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- Industrial application up
to 10.000 L/h

Production Scale
Up to 10,000 L/h
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Scale-Up

Pilot scale
0.6 L/h-=150 L/h

R&D and kilo lab
0.6-15L/h

Channel numbering-up
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