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Introduction 

In this white paper we present an FPGA-
based accelerated solution for DNA 
sequencing and dot plotting. We describe 
how multiple FPGA devices can be deployed 
to create a scalable cluster dedicated to the 
task of analyzing large amounts of data, and 
how this clustered hardware application can 
be connected to a software application for 
visualization and analysis. 
 
We discuss parallel FPGA optimizations, and 
we show how higher-level programming 
methods, using the C language, can speed the 
development of this and other types of highly 
parallel algorithms. 

DNA Sequencing and Dot Plots 

DNA sequencing and analysis are key 
components of modern medical science. DNA 
sequencing is indispensable in basic research 
as well as in practical applications such as 
pharmaceutical development, disease 
prevention and criminal forensics. 
 
DNA sequencing is just one step in the 
process of bioinformatics analysis. Managing 
and understanding the results of sequencing 
and comparing genetic data is critical to 
making bioinformatics a practical technology.  
 
A dot plot is a graphical tool for visualization 
enabling the comparison of two biological 
sequences. A dot plot provides an easy way to 
understand a large amount of information 
about the relationship of two sequences, and 
serves as a framework for further analysis. 
 
The most basic dot plot is a comparison of 
every acid in each DNA sequence to every 
acid in the other. These point-to-point 
comparisons are viewed as a 2-dimensional 
grid of dots, as shown in Figure 1. Each 

sequence is placed on an axis of the grid and a 
dot is drawn at each point in the grid at which 
the corresponding acids in each chain are 
equal. When you look at this image of dots—
the dot plot—its lines, blocks, and other 
patterns clearly reveal the similarities 
between the two DNA sequences. 
 

 
 
Figure 1 – A DNA sequence dot plot 

Software for Creating Dot Plots 

Generating dot plots from paired base 
sequences is not a complicated computing 
problem, but it is a computationally expensive 
one. Dot plot generation software programs 
must apply iterative algorithms over millions 
of DNA sequences to generate a useable graph. 
 
Because there are just four acids in a DNA 
sequence (Adenine, Thymine, Guanine, and 
Cytosine), there is a 25% chance that any 
specific pair of acids will match. Therefore, a 
simple pair-matching dot plot will be full of 
noise from all the randomly occurring 
matches. To hide the noise, the algorithm 
must use longer sequences of bases rather 
than just comparing single base pairs. Using 
runs of 25 bases is a common approach in 
today’s algorithms. 
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When comparing runs, a scoring method 
must be used to determine how closely the 
two sequences match. One option would be 
to count only those runs in which all 25 bases 
match. That method would hide a lot of noise, 
as the probability of a random match is now 
0.2525. However, this would also hide runs of 
24 matching bases. So instead, scoring 
algorithms must assign a ranking to the runs 
such that longer matching runs have the most 
weight, but shorter matching runs aren't 
completely ignored. These scoring algorithms 
require substantial computing resources as 
they are iteratively applied to very long 
sequences having many millions of pairs. 

Accelerating DNA Scoring in FPGAs 

The comparing and scoring of DNA 
sequences requires algorithms that are 
“embarrassingly parallel”, meaning they are 
ideal candidates for FPGA acceleration. An 
FPGA accelerator for this purpose may be 
implemented as a coprocessor, for example a 
single large FPGA device closely coupled to a 
traditional processor, or it may be 
implemented as a dedicated appliance that 
includes dozens or even hundreds of FPGAs 
arranged in a cluster. 
 
In our experiments, we have chosen to 
implement the DNA sequencing and dot plot 
application using both methods, using a 
single FPGA accelerator card attached to a 
laptop computer for initial development and 
performance measurement, and then scaling 
the algorithm up in size, using as many as 
160 FPGAs using a Pico Computing EX-Series 
cluster system. 
 
To make performance comparison easy, we 
used an open source tool called Gepardi as 
the basis for our FPGA-accelerated 
application. The Gepard program is written in 
Java and computes and displays dot plots as a 

2D color graph. For our FPGA implementation 
we used the same scoring function as used in 
the Gepard program, and we modified the 
Gepard program to display the resulting 
software and hardware dot plot results side-
by-side. We used a C-to-FPGA compiler 
available from Impulse Accelerated 
Technologies to create the FPGA 
implementation from a higher-level software 
description. 

Implementation Approach 

Our first step was to re-implement the Gepard 
sequencing algorithm in C-language. We did 
this so we could verify the output of the FPGA 
implementation directly by comparing it to 
the output of the same code compiled as 
software. This would provide us with 
benchmark results for the software running 
on a CPU versus the same algorithm running 
in the FPGAs. 
 
After writing and testing the software 
implementation, we prototyped the FPGA 
version of the algorithm by using the Impulse 
C-to-FPGA compiler to get a rough idea of how 
efficiently an FPGA would handle the 
algorithm and its inner code loops. We used a 
single Pico Computing E-17 card during the 
development, testing and optimization of the 
initial sequencing and scoring algorithm. 

A Scalable Approach to Development 

The dot plotting application provides an 
excellent example of using a scalable FPGA 
solution for development and deployment. 
During initial algorithm development and 
testing, a single FPGA device, a Xilinx Virtex-5 
FX70T encapsulated in a Pico Computing E-17 
card, was used for prototyping and to 
generate initial performance results. Because 
the E-17 attaches directly to the development 
system with an ExpressCard interface (see 
Figure 2), we were able to make changes, 
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download and test the algorithm without the 
need for an external FPGA development 
board or for FPGA downloading and 
programming cables. In fact, because the E-
17 fits into a standard slot on the side of a 
laptop computer and draws under 2W of 
power, it was possible to download and test 
accelerated FPGA algorithms while running 
on laptop battery power alone. 
 

 
Figure 2 – Pico Computing E-17 

Software Dot Plot Implementation 

Before writing and optimizing C code for 
compiling to the FPGA, we wrote a software 
version of the algorithm in C for use as a 
benchmark. We took the Gepard program 
mentioned above as our model, and ported 
the part of it that calculates the dot plot. This 
calculation is performed using two functions.  
 
The first function, window_score, calculates 
the value of a single dot. A dot_plot function 
invokes window_score to generate the full 
dot plot for two sequences.  
 
The window_score function uses a non-linear 
scoring in an easily unrolled loop and is 
hence highly parallelizable, making it ideal 
for running on FPGAs. 
 
Our dot_plot function includes a parameter 
called zoom, which has the effect of "zooming 

out" the dot plot when displayed. This allows 
us to fit large dot plots into a viewable area on 
the screen. This has the same effect as 
generating a non-zoomed dot plot and then 
zooming out with a photo editor. Zooming is 
important because even simple bacteria have 
DNA that is millions of bases long, and 
comparing two of these would produce 
trillions of individual dots. Zooming out lets us 
fit these dot plots on a screen that can handle 
just a few million pixels. We'll call these 
conglomerated zoomed-out dots "tiles." For 
example, if the zoom parameter is 10, then 
each resulting tile will be the combination of 
10 X 10=100 dots. 

Creating the FPGA Firmware 

The FPGA firmware for this example passed 
through many revisions and optimizations 
before reaching its final form. These 
optimizations were important to achieve a 
high level of performance, and should be 
considered for any software algorithm being 
moved into FPGA hardware. 
  
Because FPGAs have relatively small 
memories, we optimized the FPGA algorithm 
and its associated hardware/software 
firmware to work on small pieces of the 
complete dot plot. We used software running 
on the host PC to split the job into smaller 
pieces for the FPGA to process, and then used 
software to reassemble the results coming 
back from the FPGA. Fortunately a dot plot is 
easy to split; we can take a small section from 
each DNA sequence and compute a 
rectangular section of the final dot plot. To 
complete the dot plot, we then proceed to plot 
every section of one sequence against every 
section of the other. For example, if we split 
each sequence into eight pieces, we'll need to 
compute 256 subplots, or “tiles” that we can 
then combine into the complete dot plot. 
 



 

 Accelerating Bioinformatics Searching and Dot Plotting 
Using a Scalable FPGA Cluster 
 

November, 2009 www.picocomputing.com  Page 4 
 

While making this optimization, we needed 
to decide what size pieces we would split the 
problem into. We could have used the zoom 
factor described above, but that would have 
limited the size of the pieces and limited our 
ability to zoom. To provide the needed 
flexibility, we decided to use multiples of the 
zoom factor. We coded an initial version of 
the application that would handle one tile, 
and compiled the code to create an FPGA 
bitmap. 

Optimizing Data Transfers: Aggregation 

When we ran the first version of the 
algorithm on an FPGA, we found that moving 
the dot values from the FPGA to the CPU 
represented a significant performance 
bottleneck; the FPGA could calculate values 
much faster than the PCIe interface could 
transfer them. 
 
Because the CPU displays a zoomed-out 
version of the dot plot to fit on the display, 
we realized we could eliminate the transfer 
bottleneck by doing the zooming on the 
FPGA. Rather than move individual dot 
values to the CPU and require the CPU to 
zoom out, we decided to compute the 
zoomed out values on the FPGA, in parallel 
with performing the scoring. 
 
This FPGA computation was simplified by our 
choice of sub-tile sizes that were the same 
size as the zoom factor; all dots in a sub-tile 
could be merged into a single pixel of the 
zoomed out plot. This was trivial to 
implement on the FPGA, requiring only that 
we sum the dot values over an entire tile and 
then transmit the sum, rather than all the 
individual values. This saved both data 
transfer bandwidth and CPU time. For a zoom 
factor of 100, this optimization resulted in 
just one value being sent for each sub-tile, 

instead of 10,000 values, thereby eliminating 
the data transfer bottleneck. 

Optimizing for Core Level Parallelism 

The dot plot algorithm itself is quite small, and 
begged to be parallelized. In fact, when we 
first built an FPGA bitmap we noticed that the 
entire algorithm required less than 5% of the 
resources in the Virtex-5 FX70 FPGA device. 
 
Obviously we could increase performance by 
putting multiple copies of the algorithm on a 
single FPGA. When doing this, we can think of 
each instance of the algorithm as a distinct 
dedicated "core", echoing the idea of multiple 
CPU cores. Each of these “cores” implements a 
single hardware “process”, in this case to 
process individual tiles of DNA sequence data. 
 
For this example we chose to put 16 of these 
cores/processes on the FPGA, with some 
additional communications logic. We created a 
process to read DNA sequence data for 16 tiles 
from the CPU and send one tile of data to each 
of the 16 processes. We also created a process 
to merge the output data into a single I/O 
stream, so the software doesn't have to read 
results from each of the 16 different copies 
separately. 
 
Implementing this type of parallelism 
required very minor changes to the software, 
and gave us a nearly 16X performance 
improvement. 

FPGA-Level Parallelism 

Once we had a working single-FPGA 
implementation with 16 cores, we could scale 
the algorithm larger by using multiple FPGAs. 
Pico Computing offers a number of platforms 
appropriate for this application, including the 
EX-300 PCI Express board that includes 16 
Xilinx Spartan™ FPGA devices (Figure 3). 
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Figure 2 – Pico Computing EX-300 
 
To scale the algorithm across multiple FPGAs, 
we created a software-side thread for each 
FPGA in the cluster. This allowed us to reuse 
our single-FPGA software with minimal 
changes. We created a shared-memory buffer 
for the final dot plot, and assigned each 
thread a piece of the input DNA sequences, 
and a piece of the output buffer. In this way 
we could run the FPGAs independently and 
avoid adding overhead for synchronization. 
 
The nature of this algorithm makes it easy to 
scale across multiple FPGAs. Most high 
performance computing algorithms require 
more effort to scale up, so it’s important to 
think of multiple-FPGA implementations 
when designing the initial algorithm. 
 
Because the software interface for the Pico 
Computing E- and EX-Series cards and 
clusters are the same, we were able to 
recompile and run the algorithm on different 
Pico Computing platforms with no need to 
change or even recompile the software. In 
one cluster experiment, we used ten EX-300 
cards, each having 16 FPGAs. Each FPGA had 
16 cores, which meant we were running 10 X 
16 X 16 = 2560 dot plot cores in one system. 
 
The cluster experiment represented a huge 
performance improvement from the single 
FPGA core we had started with. Getting that 
speedup required packing extra copies of the 
same core on an each FPGA, and using 
additional management threads in software. 

Evaluating Performance 

The results of running the dot plot application 
in software and on two clustered FPGA 
configurations are shown below: 
 

Processing 
Platform 

Total Time to Complete 
(4M bases) 

Core™2 Duo, 2.66GHz 
(Windows) 

17,853 minutes (est) 

EX-300 board 
(16 Spartan™-3 FPGA) 

24.7 minutes 

EX-300 cluster 
(160 Spartan™-3 FPGAs) 

2.5 minutes 

 
Note that the software run times are 
estimated, based on measurements of 
runtimes for smaller numbers of base pairs 
using the Gepard program.  

Summary 

Bioinformatics is a category of applications 
requiring highly parallel, heavily pipelined 
algorithms. These algorithms are ideally 
suited to FPGA clusters. As we have shown 
with this example, using a scalable FPGA 
platform greatly speeds the development of 
bioinformatics applications.  

About Pico Computing 

Pico Computing specializes in highly 
integrated high performance computing 
platforms based on Field Programmable Gate 
Array (FPGA) technologies. The company 
also provides consulting and engineering 
services for industries that include defense, 
industrial, financial and embedded computing. 
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