

November, 2009

A Pico Computing
Life Sciences White Paper

Accelerating Bioinformatics Searching and Dot
Plotting Using a Scalable FPGA Cluster

Hardware accelerated platform enables fast analysis of DNA sequences

Greg Edvenson and Mark Hur
Pico Computing, Inc.

150 Nickerson, Suite 311

Seattle, WA 98109
(206) 283-2178

www.picocomputing.com

 Accelerating Bioinformatics Searching and Dot Plotting
Using a Scalable FPGA Cluster

November, 2009 www.picocomputing.com Page 1

Introduction

In this white paper we present an FPGA-
based accelerated solution for DNA
sequencing and dot plotting. We describe
how multiple FPGA devices can be deployed
to create a scalable cluster dedicated to the
task of analyzing large amounts of data, and
how this clustered hardware application can
be connected to a software application for
visualization and analysis.

We discuss parallel FPGA optimizations, and
we show how higher-level programming
methods, using the C language, can speed the
development of this and other types of highly
parallel algorithms.

DNA Sequencing and Dot Plots

DNA sequencing and analysis are key
components of modern medical science. DNA
sequencing is indispensable in basic research
as well as in practical applications such as
pharmaceutical development, disease
prevention and criminal forensics.

DNA sequencing is just one step in the
process of bioinformatics analysis. Managing
and understanding the results of sequencing
and comparing genetic data is critical to
making bioinformatics a practical technology.

A dot plot is a graphical tool for visualization
enabling the comparison of two biological
sequences. A dot plot provides an easy way to
understand a large amount of information
about the relationship of two sequences, and
serves as a framework for further analysis.

The most basic dot plot is a comparison of
every acid in each DNA sequence to every
acid in the other. These point-to-point
comparisons are viewed as a 2-dimensional
grid of dots, as shown in Figure 1. Each

sequence is placed on an axis of the grid and a
dot is drawn at each point in the grid at which
the corresponding acids in each chain are
equal. When you look at this image of dots—
the dot plot—its lines, blocks, and other
patterns clearly reveal the similarities
between the two DNA sequences.

Figure 1 – A DNA sequence dot plot

Software for Creating Dot Plots

Generating dot plots from paired base
sequences is not a complicated computing
problem, but it is a computationally expensive
one. Dot plot generation software programs
must apply iterative algorithms over millions
of DNA sequences to generate a useable graph.

Because there are just four acids in a DNA
sequence (Adenine, Thymine, Guanine, and
Cytosine), there is a 25% chance that any
specific pair of acids will match. Therefore, a
simple pair-matching dot plot will be full of
noise from all the randomly occurring
matches. To hide the noise, the algorithm
must use longer sequences of bases rather
than just comparing single base pairs. Using
runs of 25 bases is a common approach in
today’s algorithms.

 Accelerating Bioinformatics Searching and Dot Plotting
Using a Scalable FPGA Cluster

November, 2009 www.picocomputing.com Page 2

When comparing runs, a scoring method
must be used to determine how closely the
two sequences match. One option would be
to count only those runs in which all 25 bases
match. That method would hide a lot of noise,
as the probability of a random match is now
0.2525. However, this would also hide runs of
24 matching bases. So instead, scoring
algorithms must assign a ranking to the runs
such that longer matching runs have the most
weight, but shorter matching runs aren't
completely ignored. These scoring algorithms
require substantial computing resources as
they are iteratively applied to very long
sequences having many millions of pairs.

Accelerating DNA Scoring in FPGAs

The comparing and scoring of DNA
sequences requires algorithms that are
“embarrassingly parallel”, meaning they are
ideal candidates for FPGA acceleration. An
FPGA accelerator for this purpose may be
implemented as a coprocessor, for example a
single large FPGA device closely coupled to a
traditional processor, or it may be
implemented as a dedicated appliance that
includes dozens or even hundreds of FPGAs
arranged in a cluster.

In our experiments, we have chosen to
implement the DNA sequencing and dot plot
application using both methods, using a
single FPGA accelerator card attached to a
laptop computer for initial development and
performance measurement, and then scaling
the algorithm up in size, using as many as
160 FPGAs using a Pico Computing EX-Series
cluster system.

To make performance comparison easy, we
used an open source tool called Gepardi as
the basis for our FPGA-accelerated
application. The Gepard program is written in
Java and computes and displays dot plots as a

2D color graph. For our FPGA implementation
we used the same scoring function as used in
the Gepard program, and we modified the
Gepard program to display the resulting
software and hardware dot plot results side-
by-side. We used a C-to-FPGA compiler
available from Impulse Accelerated
Technologies to create the FPGA
implementation from a higher-level software
description.

Implementation Approach

Our first step was to re-implement the Gepard
sequencing algorithm in C-language. We did
this so we could verify the output of the FPGA
implementation directly by comparing it to
the output of the same code compiled as
software. This would provide us with
benchmark results for the software running
on a CPU versus the same algorithm running
in the FPGAs.

After writing and testing the software
implementation, we prototyped the FPGA
version of the algorithm by using the Impulse
C-to-FPGA compiler to get a rough idea of how
efficiently an FPGA would handle the
algorithm and its inner code loops. We used a
single Pico Computing E-17 card during the
development, testing and optimization of the
initial sequencing and scoring algorithm.

A Scalable Approach to Development

The dot plotting application provides an
excellent example of using a scalable FPGA
solution for development and deployment.
During initial algorithm development and
testing, a single FPGA device, a Xilinx Virtex-5
FX70T encapsulated in a Pico Computing E-17
card, was used for prototyping and to
generate initial performance results. Because
the E-17 attaches directly to the development
system with an ExpressCard interface (see
Figure 2), we were able to make changes,

 Accelerating Bioinformatics Searching and Dot Plotting
Using a Scalable FPGA Cluster

November, 2009 www.picocomputing.com Page 3

download and test the algorithm without the
need for an external FPGA development
board or for FPGA downloading and
programming cables. In fact, because the E-
17 fits into a standard slot on the side of a
laptop computer and draws under 2W of
power, it was possible to download and test
accelerated FPGA algorithms while running
on laptop battery power alone.

Figure 2 – Pico Computing E-17

Software Dot Plot Implementation

Before writing and optimizing C code for
compiling to the FPGA, we wrote a software
version of the algorithm in C for use as a
benchmark. We took the Gepard program
mentioned above as our model, and ported
the part of it that calculates the dot plot. This
calculation is performed using two functions.

The first function, window_score, calculates
the value of a single dot. A dot_plot function
invokes window_score to generate the full
dot plot for two sequences.

The window_score function uses a non-linear
scoring in an easily unrolled loop and is
hence highly parallelizable, making it ideal
for running on FPGAs.

Our dot_plot function includes a parameter
called zoom, which has the effect of "zooming

out" the dot plot when displayed. This allows
us to fit large dot plots into a viewable area on
the screen. This has the same effect as
generating a non-zoomed dot plot and then
zooming out with a photo editor. Zooming is
important because even simple bacteria have
DNA that is millions of bases long, and
comparing two of these would produce
trillions of individual dots. Zooming out lets us
fit these dot plots on a screen that can handle
just a few million pixels. We'll call these
conglomerated zoomed-out dots "tiles." For
example, if the zoom parameter is 10, then
each resulting tile will be the combination of
10 X 10=100 dots.

Creating the FPGA Firmware

The FPGA firmware for this example passed
through many revisions and optimizations
before reaching its final form. These
optimizations were important to achieve a
high level of performance, and should be
considered for any software algorithm being
moved into FPGA hardware.

Because FPGAs have relatively small
memories, we optimized the FPGA algorithm
and its associated hardware/software
firmware to work on small pieces of the
complete dot plot. We used software running
on the host PC to split the job into smaller
pieces for the FPGA to process, and then used
software to reassemble the results coming
back from the FPGA. Fortunately a dot plot is
easy to split; we can take a small section from
each DNA sequence and compute a
rectangular section of the final dot plot. To
complete the dot plot, we then proceed to plot
every section of one sequence against every
section of the other. For example, if we split
each sequence into eight pieces, we'll need to
compute 256 subplots, or “tiles” that we can
then combine into the complete dot plot.

 Accelerating Bioinformatics Searching and Dot Plotting
Using a Scalable FPGA Cluster

November, 2009 www.picocomputing.com Page 4

While making this optimization, we needed
to decide what size pieces we would split the
problem into. We could have used the zoom
factor described above, but that would have
limited the size of the pieces and limited our
ability to zoom. To provide the needed
flexibility, we decided to use multiples of the
zoom factor. We coded an initial version of
the application that would handle one tile,
and compiled the code to create an FPGA
bitmap.

Optimizing Data Transfers: Aggregation

When we ran the first version of the
algorithm on an FPGA, we found that moving
the dot values from the FPGA to the CPU
represented a significant performance
bottleneck; the FPGA could calculate values
much faster than the PCIe interface could
transfer them.

Because the CPU displays a zoomed-out
version of the dot plot to fit on the display,
we realized we could eliminate the transfer
bottleneck by doing the zooming on the
FPGA. Rather than move individual dot
values to the CPU and require the CPU to
zoom out, we decided to compute the
zoomed out values on the FPGA, in parallel
with performing the scoring.

This FPGA computation was simplified by our
choice of sub-tile sizes that were the same
size as the zoom factor; all dots in a sub-tile
could be merged into a single pixel of the
zoomed out plot. This was trivial to
implement on the FPGA, requiring only that
we sum the dot values over an entire tile and
then transmit the sum, rather than all the
individual values. This saved both data
transfer bandwidth and CPU time. For a zoom
factor of 100, this optimization resulted in
just one value being sent for each sub-tile,

instead of 10,000 values, thereby eliminating
the data transfer bottleneck.

Optimizing for Core Level Parallelism

The dot plot algorithm itself is quite small, and
begged to be parallelized. In fact, when we
first built an FPGA bitmap we noticed that the
entire algorithm required less than 5% of the
resources in the Virtex-5 FX70 FPGA device.

Obviously we could increase performance by
putting multiple copies of the algorithm on a
single FPGA. When doing this, we can think of
each instance of the algorithm as a distinct
dedicated "core", echoing the idea of multiple
CPU cores. Each of these “cores” implements a
single hardware “process”, in this case to
process individual tiles of DNA sequence data.

For this example we chose to put 16 of these
cores/processes on the FPGA, with some
additional communications logic. We created a
process to read DNA sequence data for 16 tiles
from the CPU and send one tile of data to each
of the 16 processes. We also created a process
to merge the output data into a single I/O
stream, so the software doesn't have to read
results from each of the 16 different copies
separately.

Implementing this type of parallelism
required very minor changes to the software,
and gave us a nearly 16X performance
improvement.

FPGA-Level Parallelism

Once we had a working single-FPGA
implementation with 16 cores, we could scale
the algorithm larger by using multiple FPGAs.
Pico Computing offers a number of platforms
appropriate for this application, including the
EX-300 PCI Express board that includes 16
Xilinx Spartan™ FPGA devices (Figure 3).

 Accelerating Bioinformatics Searching and Dot Plotting
Using a Scalable FPGA Cluster

November, 2009 www.picocomputing.com Page 5

Figure 2 – Pico Computing EX-300

To scale the algorithm across multiple FPGAs,
we created a software-side thread for each
FPGA in the cluster. This allowed us to reuse
our single-FPGA software with minimal
changes. We created a shared-memory buffer
for the final dot plot, and assigned each
thread a piece of the input DNA sequences,
and a piece of the output buffer. In this way
we could run the FPGAs independently and
avoid adding overhead for synchronization.

The nature of this algorithm makes it easy to
scale across multiple FPGAs. Most high
performance computing algorithms require
more effort to scale up, so it’s important to
think of multiple-FPGA implementations
when designing the initial algorithm.

Because the software interface for the Pico
Computing E- and EX-Series cards and
clusters are the same, we were able to
recompile and run the algorithm on different
Pico Computing platforms with no need to
change or even recompile the software. In
one cluster experiment, we used ten EX-300
cards, each having 16 FPGAs. Each FPGA had
16 cores, which meant we were running 10 X
16 X 16 = 2560 dot plot cores in one system.

The cluster experiment represented a huge
performance improvement from the single
FPGA core we had started with. Getting that
speedup required packing extra copies of the
same core on an each FPGA, and using
additional management threads in software.

Evaluating Performance

The results of running the dot plot application
in software and on two clustered FPGA
configurations are shown below:

Processing
Platform

Total Time to Complete
(4M bases)

Core™2 Duo, 2.66GHz
(Windows)

17,853 minutes (est)

EX-300 board
(16 Spartan™-3 FPGA)

24.7 minutes

EX-300 cluster
(160 Spartan™-3 FPGAs)

2.5 minutes

Note that the software run times are
estimated, based on measurements of
runtimes for smaller numbers of base pairs
using the Gepard program.

Summary

Bioinformatics is a category of applications
requiring highly parallel, heavily pipelined
algorithms. These algorithms are ideally
suited to FPGA clusters. As we have shown
with this example, using a scalable FPGA
platform greatly speeds the development of
bioinformatics applications.

About Pico Computing

Pico Computing specializes in highly
integrated high performance computing
platforms based on Field Programmable Gate
Array (FPGA) technologies. The company
also provides consulting and engineering
services for industries that include defense,
industrial, financial and embedded computing.

References

i Jan Krumsiek, Roland Arnold, and Thomas Rattei,
Gepard: A rapid and sensitive tool for creating dotplots
on genome scale. Oxford University Press, 2007.

