
Executive Summary

Life sciences and High Performance Computing(HPC) have a symbiotic relationship -- life sciences 
research today relies heavily on HPC infrastructure even as HPC itself evolves rapidly to meet 
newer, more demanding data analysis requirements in areas such as the Next Generation 
Sequencing (NGS). IBM and Intel collaborate worldwide with HPC application providers and users,
helping them optimize their applications on the IBM eX5 Enterprise Server portfolio to solve 
challenging problems in industry, academia and research. One such example is the Sanger Institute 
that deploys the IBMs System x3950 M2 for NGS research. IBMs new eX5 Enterprise Systems, 
featuring the Intel® Xeon® processor 7500 series, perform much better for NGS applications such 
as Velvet and deftly address its extreme memory requirements. The new eX5 series offerings - System 
x3850 X5 and System 3950 X5, not only provide increased HPC density but also enables users to add 
a full drawer of extra memory, a feature available exclusively from IBM in an x86 processor based 
HPC server. Many large memory intensive HPC applications can now run with just a handful of 
faster, multi-core, scalable eX5 series IBM systems, resulting in minimized costs, energy 
requirements and great simplicity of deployment. 

This paper presents an overview of NGS followed by key technological and computational issues 
related to life sciences research, with specific reference to Sanger Institute, that are addressed 
through IBM’s Intel based eX5 systems. Based on real scientific experiment data sourced from IBM 
and Sanger Institute, we highlight how IBM eX5 servers scale up and are best suited for compute and 
memory intensive applications such as Velvet, ABySS and SOAP. Life sciences applications benefit 
not only from the flexibility, dense compute capacity, 512GB-1TB memory exclusively engineered in 
eX5 enterprise systems for Velvet kind of applications, but also from superior I/O, memory 
performance and high speed interconnects coupled with IBM’s acumen for simplified cluster 
administration, engineering innovation for unparalleled power and energy efficiencies.

Introduction to Next Generation Sequencing

The Human Genome Project1 was certainly one of the most significant milestones in genomics research and gene 
sequencing. Building on that and driven by the need for fast, affordable and accurate genome information, the Sanger 
Institute is today at the forefront of an explosion of activity in next generation sequence through research such as 
‘Broken genomes behind breast cancer’2 and ‘Novel method to reveal drug targets: Interactions between proteins 
studied on a global scale’3. Advances in computer hardware and software and new computing paradigms such as 
cloud computing help scientists at Sanger and across the world to address the challenges of scale and efficiency 
required to compute, store, sift, visualize and analyze gigantic volumes of genomic research data. 

Gene Sequencing: Genome DNA sequences record all the genetic information contained in a given organism. But 
creating a sequential list of the base pairs comprising the DNA of a particular plant and animal is extremely difficult 
– there is no mechanism to read a single strand of DNA like a punch tape. Instead, scientists use a crude technique 
that first breaks4 (Figure 1) DNA into short pieces that they know how to identify. They then reassemble the original 
sequence based on how these short fragments overlap. This is a complex and error-prone process – much like 
shredding several copies of a critical document and then having to reconstruct the original by matching bits of shreds 
using overlapping text and other patterns5. Reliably sequencing a single stretch of DNA involves combining many 
dozens of duplicate data sets to arrive at an acceptable level of fidelity.

                                                
1 Human Genome Project (HGP)
2 Sanger link - Broken Genomes behind breast cancer
3 Sanger link - Novel method to reveal drug targets: Interactions between proteins studied on a global scale
4 Thomas Keane – Next Gen Sequencing
5 A short primer on Bioinformatics
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Locating the genes: Once the genome DNA sequence is established, scientists locate and delimit the coding regions 
from the non-coding or unused ones. This is a part of determining the function of each coding region within the DNA.
The search for coding regions utilizes systems and computer algorithms from areas such as signal processing, 
cryptography, and natural language processing techniques that are good at distinguishing information from random 
noise. The work is tedious and requires scientists to sift through sequencing data and apply various alignment 
algorithms to look for overlaps between short DNA fragments. In theory, this is similar to text analysis techniques for 
electronic documents that have been used for years now. In practice, because of the immense volumes of data involved
in next generation sequencing (NGS), the work is complex, resource and labor intensive, and error prone.

This is why research institutes like Sanger Institute use the IBM eX5 for running NGS applications such as Velvet, 
ABySS and SOAP on projects such as ‘Human genome sequencing of an African male individual’ and ‘Gene 
sequencing of Plasmodium falciparum (Malaria causing parasite). IBM’s Intel based eX5’s architecture, and 
especially its unparalleled and huge memory capacity, helps applications such as Velvet to meet the challenges of 
extreme memory requirements and large volumes of output data. Besides the unique memory architecture, eX5 
solutions provide outstanding compute speed, performance, scale, flexibility, reliability, energy, simplified 
management and overall efficiency benefits. 

The key feature of eX5 is its MAX5 snap-on memory expansion unit ("memory drawer") that enables up to double 
the memory capacity of the standard Intel-supplied chip set for Nehalem-EX. Compared to other server designs with 
smaller memory ranges, eX5 can deliver significant economic benefits for running and deploying NGS applications 
in life sciences domain.

Advances in Next Generation Sequencing (NGS)

Gene sequencing data is rich in information. A typical 100 base pair (bp) piece of sequence contains 4100 i.e., 1.6e+60 
combinations of the four bases A, C, G and T, and the complete haploid human genome is more than 3,000,000,000 
bp6. Until mid-2000, the Sanger chain termination method (1977) was the gold standard in sequencing . It could 
typically generate a 1000 bp high-quality sequence called “read”. Subsequent technology innovations have ushered in 
a new wave of NGS techniques aimed at providing inexpensive human genome sequences. This has led to huge gains 
in DNA sequence throughput and reductions in cost-per-base. Advances in Nanotechnology have enabled scientists 
to run hundreds of thousands to millions of sequencing reactions simultaneously. As a result, the DNA sequencing 
field is brimming with innovative ideas7 that are path breaking in terms of application to healthcare and clinical 

                                                
6 Paper: Techniques of Genome Mapping and Sequencing
7 Computational Analysis of Metagenomes: Daniel Huson – Chair of Algorithms in Bioinformatics 

Figure 2: Next Generation Sequencing Technologies (Source: Sanger, NGS ecosystem7)

Figure 1: Next Generation Sequencing Process (Sanger –NGS4)



research (Figure 2). Today, there many new and many under development instruments that promise to offer orders of 
magnitude higher sequencing throughput per dollar spent than before. Despite the high cost of newer instruments, the 
volume of data generated (see Figure 3) and high error rates, NGS has opened up the field of genomics enabling 
researchers to pursue several new avenues than were impossible with the older techniques.

Current state of affairs in Gene Sequencing: In spite of the intense research and technological advancement in 
genomics, there are surprisingly few organisms with fully sequenced genome today. The timeline and the amount of 
work that is yet to be done in terms of gene decoding beyond the simple bacteria8 is indicated in Figure 4 below. We 
are yet to overcome technical and computational hurdles before sequencing becomes an automatic process and 
scientists can sequence majority of the species or even learn the role and origin of the non-coding DNA sequences. 
Human Genome involves accessing and processing exabytes of data and analyzing terabases of sequences – this is a 
difficult task even with the latest technology. Some of the key challenges that NGS researchers face are data storage, 
access, faster analysis, tools for navigating genomics data, and dealing with metadata.

Applications of Gene Sequencing

With the conclusion of the Human Genome Project, a number of radically new sequencing technologies have reached
exciting phases of development. These technologies can dramatically increase the output of DNA sequence per 
machine and slash the cost by miniaturizing the process and performing millions of reactions in parallel. Although in 
most cases the individual read lengths of each DNA fragment are much shorter than traditional Sanger methods, the 
sheer quantity of sequence and sophistication of computational methods for assembling that sequence are such that 
these technologies are already finding many exciting applications in academia and industry. As newer sequencing 
platforms offer orders of magnitude improved throughput and cost efficiencies, routine personalized genome 
sequencing is suddenly looking to be within the reach of consumers and several companies are looking at 
commercializing these advances. The most common application areas9 of gene sequencing are ‘Re-sequencing’

                                                
8 Lecture: Metagenomics and current state of Genomics

9 Inside Pharma Reports – NGS

Figure 4: Sequencing of Genomes (Source – GOLD 
Genomes Online Database, www.genomesonline.org)

Figure 3: Perspectives - Kilobases generated per machine per day



followed by de novo sequencing, genotyping, comparative genomics, systems biology, bioinformatics, diagnostics 
and protein functions (Figure 5).

The trend towards faster sequencing has not only pushed the cost of sequencing lower but also closer to the goal of a 
$1000 for a human genome that many companies and researchers hope to achieve in the near future. At this price 
point, experts believe that human genome sequencing will reach the global middle class that approximately spends 
similar amounts for newer routine medical procedures. A genetic readout of coding regions of an individual’s DNA 
could potentially reveal their predisposition to common and rare diseases. This information can help individuals tune
their diet, lifestyle, and medication for a full, healthy and better life.

Figure 6: Applications of NGS (Source IBM)

Already, disciplines such as meta-genomics, epigenetics, discovery of non-coding RNAs, and protein-binding sites
use some of these newer sequencing technologies today. There are essentially two types of problems: alignment 
problems (for which a previously sequenced reference sequence is available) and de novo assembly problems (for 
which no reference sequence is available). The problem lies in dealing with volumes of experimental data during the 
analysis. Some of the NGS applications such as Velvet require enormous amounts of system memory to be able to 
load and analyze the requisite data sets to produce meaningful inferences from the genomic experiments.

Each of the NGS technologies strikes a different balance between cost, read length, data volume and rate of data
generation. The focus of first wave of NGS technologies was to re-sequence genomes in a shorter time and at a lower 
cost as compared to traditional Sanger sequencing. The Solexa GA platform and 454 GS20 pyrosequencing that were
developed by Illumina and Roche respectively, generated reads of around 36 and 100 nucleotides respectively. These
short reads were adequate for re-sequencing applications but it was widely assumed that they would be too short for 
de novo assembly. Since the introduction of these technologies, the ambition and scope of applications have 
increased enormously culminating in large-scale meta-genomic and evolutionary analysis of tens of species 
simultaneously.

Gene Sequencing Ecosystem 

Over the past five years, NGS has revolutionized large-scale sequencing resulting in a drastic increase in the number 
of bases obtained per sequencing run (Figure 3, Figure 7) while at the same time decreasing the costs per base. 
Compared to Sanger sequencing, NGS technologies yield shorter read lengths. Despite this drawback, they have 

Figure 5: Applications of Gene Sequencing (Source – Insight Pharma Reports, NGS Survey, 2007)



greatly facilitated genome sequencing, first for prokaryotic genomes and within the last year for eukaryotic genomes. 
This advance was possible due to the development of software that allows the ‘de novo’ assembly of draft genomes 
from large numbers of short reads. In addition, NGS is now used in case of meta-genomics studies, detection of 
sequence variations within individual genomes, e.g., single-nucleotide polymorphisms (SNPs), insertions/deletions 
(indels), or structural variants. Earlier, many of the high-throughput studies utilized hybridization-based methods 
such as microarrays. They have quickly adopted NGS technologies now. This includes the use of NGS for 
transcriptomics (RNA-seq) or the genome-wide analysis of DNA/protein interactions (ChIP-seq).

Genomic projects underpin almost all aspects of modern biology. This includes molecular biology, biodiversity 
studies and medical research including drug development and vaccines. As part of their NGS efforts, many research 
institutions have purchased newer instruments. Consequently, they now need to store, curate, and access and analyze 
immense amount of generated sequence data. The new DNA sequencing equipment generates billions of base pairs 
worth of sequence data per day and this will only rise. This new equipment shifts the bottleneck away from the 
generation of DNA data onto the ongoing data management, data access and data processing to ensure that the 
information is readily available to support the research. Some of the established and emerging players who have 
brought NGS applications to the market include Life Technologies, Applied Biosystems, Illumina, Roche 454, 
Pacific Biosciences, Ion Torrent, Helicos and several others. Many facilities around the globe today deal with high-
throughput sequencing10.

Disease and Drug Research - are we there yet? The final genome sequencing was supposed to lead genomics into 
cures for many diseases including cancer, diabetes and depression. Scientists believe that the real cures are still years 
away. There are still many barriers between knowledge of the genome and final solutions to diseases despite the 
significant lowering of costs through newer sequencing techniques available today. 

Importance of Gene Sequencing in an era of global competition: Healthcare is receiving increasing importance 
and priority from governments and economists around the globe11. The Beijing Genomics Institute (BGI) is 
purchasing12 128 new HiSeq 2000 sequencing systems to aid $1.5 billion of research in the areas of sustainable 
development, healthcare, agriculture and bio-energy. This purchase represents the largest single order of such 
systems to date. As many of the drug patents reach maturity, and with the increase in number of diseases that can be 
cured with targeted drugs, it is becoming increasingly important to invest and lead such research initiatives.

Healthcare and Gene Sequencing

Once the computational challenges are addressed, experts predict that the cost and efficiency gains in sequencing 
could usher in an era of personal genomics with personalized, predictive, preventive, and participatory medicine 
within a decade. They see an urgent need to develop semantic ontologies that span genomics, molecular systems 
biology, and medical data. Although the development of such ontologies would be costly and difficult, the benefits 
will far outweigh the costs. Availability of such ontologies would allow a revolution in web-services for personal 

                                                

10 Genomics: High-throughput sequencing facilities http://ngsbuzz.blogspot.com/
11 The Economist – article on healthcare 
12 BGI recent purchases

Figure 7:  DNA sequencing growth (Source: The Economist)



genomics and medicine. For more than a decade now, the cost per nucleotide of DNA sequencing has been reducing
exponentially.

The availability of cheap, diploid, full-genome sequences may still be several years away. However, there are many
low-cost tests for large numbers of SNPs and other sequence variations that are already being used by companies 
such as 23andMe, NaviGenetics and deCODE Genetics to provide personalized disease-susceptibility profiles. 
KNOME is offering full personal genome sequencing for those who can afford the current costs. The extent to which 
the availability of such data will lead to improvements in health-care depends on four criteria, as set out by the US 
Centers for Disease Control: 

 Accuracy of genotyping, 
 Predictive value of genotypes, 
 Clinical utility of knowing genotypes,
 Ethical, legal and social issues involved.

Technical Barriers for NGS: System resources (CPU, Memory)

Steven Salzberg, director, Center for Bioinformatics and Computational Biology, University of Maryland, has some 
interesting observations regarding technological barriers. He believes that managing and analyzing NGS data and the
software that is making it happen is critical to the evolution of genomic research. It is not only important to keep the 
processed data but also to distinguish the raw data from the sequencer’s images. Files of imaging data from the 
sequencing plates, gels, or slides are gigantic. Image-processing software figures out the nucleotides from the images 
and generates files that are large, but not nearly as large as the images. Therefore, it is important to save all the 
sequence reads in order to recall them during analysis, but not the raw images. Those images can generate about a 
terabyte of data for one experiment. Once that terabyte of data is compressed down to DNA sequence, it converts to 
tens of gigabases. 

Another issue is that software designed for Sanger sequencing or other traditional techniques may not be adequate for 
NGS or the short-read re-sequencing. Instrument manufactures, academics and third party software companies are all 
working together to address this issue. For the task of assembly, that is, reconstructing a genome from the reads, there 
are new assemblers, which are geared for short reads. According to Salzberg, Velvet has the best and most popular 
assemblers available today and it works quite well for assembling very short reads. However, one of the major
limitations of new assemblers is that for very short reads they do not yet seem able to handle large mammalian-sized 
genome.  The problem during assembling a mammalian or animal genome from short reads is the sheer amount of 
data. That requires researchers to be very careful while using these algorithms in order to manage the memory of the 
HPC systems. It is not just CPU time that is an issue but also memory. Analysis requires reading all data in at some 
point, and the computational systems and setup do not have sufficient memory. The machines just cannot handle it 
and the system can potentially crash causing loss of data and effort. 

Sanger’s Role in Gene Sequencing

Sanger Institute pursues research that builds understanding of gene function in health and disease and creates 
resources of lasting value to biomedical research. Genomes are the archival instructions upon which an organism is 
built. The sequence data provided by the Human Genome Project is a rich source of information that drives improved 
understanding of human health and variation. Studying human sequences, comparing model organism genomes and 
investigating the effects of pathogens on humans builds knowledge of the diversity of our genomes and how this 
affects our susceptibility to disease.

NGS at Sanger: A fundamental role of DNA sequencing is to generate large continuous regions of DNA sequence. 
The ‘Whole-Genome’ shotgun method has proven to be the most cost-effective and least labor intensive method of 
sequencing that was applied for human genome and completed by a BAC-by-BAC strategy. The Capillary 

Figure 8: Workflow for NGS data analysis



sequencing reads are ~600-800bp in length and these methods involve computing all overlaps of reads and then 
resolving the overlaps to generate the assembly. However, the volume and the short read length of data from the next 
generation sequencing machines cannot utilize the read-centric overlap approaches. Pevzner et al. introduced an 
alternative assembly framework based on ‘de Bruijn’ graph13 that was based on an idea of a graph with fixed-length 
subsequences (k-mers). The key in this method is not storing read sequences but k-mer abundance information in a 
graph structure. Figure 8 shows a typical workflow for NGS data analysis.

HPC infrastructure at Sanger: Typical storage and compute required at Sanger for genomic research analysis 
project are depicted in Figure 6. There is prodigious amount of data generated by high-throughput genomic research 
equipment. The rate of data production far exceeds the capability to analyze it. The process and workflows required 
to analyze the data are extremely complex and resource intensive. The information storage equipment required for 
‘Vertebrate Re-sequencing’ activity at Sanger is shown in Figure 10.

A look at Sanger’s future HPC needs: The Sanger Institute aims to be at the leading edge of genome scale 
scientific research, and high throughput sequencing is the bedrock of their work.  At a generation rate of over a 
terabase of sequences a week, the key requirement at Sanger from HPC is downstream meta-analysis of this 
sequencing data. The rate of increase in sequencing technologies puts a lot of pressure on the HPC infrastructure. 
Every six months, Sanger has a twofold increase in their compute and storage requirements as the rate of data output 
from their sequencers doubles. Some of the primary NGS software in use is listed in Figure 11.

Figure 11: Primary NGS Software

How Sanger benefits from IBM solutions

As part of several gene sequencing studies that utilize huge datasets such as the Human Genome sequencing of an 
African Male individual and Plasmodium Falciparum 3D7 clone – Malarial parasite, the Sanger Institute uses latest 
techniques, analysis and NGS algorithms including Velvet, SOAP, and AbySS. IBMs eX5 based systems have been 
successfully deployed at Sanger for conducting experiments related to many such studies where genome dataset sizes
range from 3.5 GB (Velvet), 170GB (ABySS) and 3.3GB (SOAP). 

At Sanger, a typical ABySS run using a dataset belonging to African Male individual sequencing study and “read” 

                                                
13 Slide #75 – NGS Tutorial by Thomas Keane

Figure 9: Typical Storage and Compute 
requirements at Sanger

Figure 10: Vertebrate Re-sequencing Information Storage (Source: Sanger)



size of 68bp consumed 180GB of system memory on an IBM x3950 M2 [72334MG] system with 8 Intel(R) Xeon(R) 
quad core CPU E7400 @ 2.40GHz and 512 GB of memory. This was a Debian/Lenny OS and Lustre 1.8 File System 
based setup. In another experiment that used Plasmodium Falciparum – the Malarial parasite sequencing dataset, the 
peak memory consumed by Velvet (kmer =21) running on the same IBM system was 334GB. For the same dataset –
SOAP used only 7G of peak memory. Some of these runs especially for Velvet with kmer=21 would not even 
complete earlier on systems that were not equipped with large memory as in IBM’s eX5 series systems. 

Figure 12: NGS: Velvet Performance Improvements with IBM eX5 Enterprise Systems (lower time is better)

For a perspective on how Velvet operates, consider some of the basics in terms of peak memory requirements and the 
volume of data generated through Velvet. Velvet is a set of algorithms manipulating ‘de Bruijn’ graphs for genomic 
Sequence assembly. It was designed for short read sequencing technologies, such as Solexa or 454 Sequencing and 
was developed by Daniel Zerbino and Ewan Birney at the European Bioinformatics Institute. The tool takes in short 
read sequences, removes errors, and produces high quality unique contigs. It then uses paired-end read and long read 
information, when available, to retrieve the repeated areas between contigs. Among other assembly methods that use 
paired-end reads, laboratory tests on Solexa 36 platform indicate that Velvet performs best in terms of resulting 
assembly length and accuracy of each contig. Velvet assembled 96% of the genome with an error rate of 0.33% per 
nucleotide.  The sequencing field is evolving rapidly and the assembly software packages such as those for Velvet are 
under active development and are likely to continually improve. For example, the algorithm for exploiting paired-
read information was substantially revised for Velvet version 0.7 compared with version 0.6, yielding a tenfold 
increase in N50 contig length14.

In theory, Velvet's algorithms work for any size of reads. However, the engineering aspects of Velvet, in particular 
the memory consumption, make it incapable of dealing with read sets of a particular size. This of course depends on 
how big a real memory machine is used for Velvet. There are cases where Velvet has been "routinely" used for 
multiple strains such as Drosophila sized genomes that require ~120MB on a 125GB machine. It is common for 
Velvet to be used into the 200-300MB region, but rarely further15. Although sheer read size is important, the memory
size is not just about the size of the genome but also about how error prone the reads themselves are.

A key feature of IBM’s Intel based eX5 architecture is its MAX5 snap-on memory expansion unit ("memory 
drawer") that enables up to double the memory capacity of the standard Intel-supplied chip set for Nehalem-EX 
which is also used in other servers based on the same chip. However, as compared to server designs with smaller 
memory ranges, eX5 can deliver significant economic benefits and satisfy the much needed peak memory 
requirements of NGS applications such as Velvet. Figure 12 compares Velvet’s performance on an Intel 7500-based
IBM x3850 system vs. the one running the same Velvet experiment at Sanger using Intel 7400 processor based 
IBMx3950 system. It shows how the new memory architecture of IBM x3850 (Intel 7500) boosts Velvet 
performance for k-mer=21. For an IBM x3850 based on Intel 7500 processor, Velvet (k-mer=21) takes much less 

                                                
14 Paper - Application of next generation sequencing technologies to microbial genetics by Daniel MacLean, Jonathan D. G. Jones and David J. 
Studholme
15 Source: Ewan Birney’s post on Velvet user list



time than the IBM x3950 system based on Intel 7400 processor with same amount of RAM – 512 GB. 

Memory Drawer for NGS extreme memory requirements: Today, x86 clusters are the mainstay for running 
bioinformatics and sequencing code at the Sanger Institute. IBM’s Intel x86 based eX5 architecture and large 
memory capability provides the best fit in terms of price, performance, energy and space requirements at Sanger. 
IBMs eX5 system benchmark results for Velvet, SOAP and ABySS runs using datasets from the Human Genome 
Sequencing African individual and Malaria Parasite – Plasmodium Falciparum clearly indicate IBM’s offering as the 
most suitable and cost effective solution with a 512 GB memory footprint.

Compact Architecture for Simplified Management: Sanger Institute is a multi-vendor shop when it comes to their 
HPC infrastructure and hence standards such as IPMI are critical in terms of systems management. Being able 
effectively manage large numbers of machines with as little human intervention as possible is vital to Sanger. IBM 
eX5 compact architecture helps Sanger deal with their HPC infrastructure for NGS research with a relatively small 
number of system administrators.

Green, optimal floor space & energy efficient: At the Sanger Institute, power, space and cooling are becoming 
increasingly important in the context of NGS research. Space and power constraints drive them to blade servers, but 
they do move away from blade form factor when requirements dictate otherwise – for example, when faced with the 
memory requirements of NGS research. IBM’s eX5 has 512 GB of memory that helps memory-intensive NGS 
research such as ABySS, see Figure 13 below. 

Figure 13: IBM eX5 Enterprise Systems address huge memory demands of NGS Algorithms

How IBM eX5 Architecture meets the challenges of NGS

IBM eX5 is the fifth generation of the Enterprise X-Architecture that takes full advantage of Intel’s next-generation 
Nehalem-EX processor. It is an x86 server design optimized for hosting workloads in demanding enterprise 
environment with two new rack-mounted servers - the x3690 X5 with 2 sockets and the x3850 X5 with four sockets. 
This is the first time IBM is extending the Enterprise X-Architecture to a blade form factor with the BladeCenter 
HX5.

IBM’s unique advantages Scalability & Reliability: While most other x86 server suppliers use Intel's standard 
chip sets as the building blocks for complete server systems, IBM has differentiated its x86 servers with unique 
technology since acquiring Sequent in the late 1990s. The first few generations of this technology, which IBM brands 
as Enterprise X-Architecture, offered moderate differentiation, at least enough for IBM to separate itself from the 
commodity orientation of most other x86 suppliers. The architecture hit its stride with eX4 in 2007, which introduced 
unique reliability and scalability features, including the ability to protect against memory failure at three different 
levels – a feature that can dramatically boost the uptime of servers. While eX5 still has still reliability features than 
lower-end Intel Xeon platforms, many of its earlier reliability features have been incorporated into the base Intel 
architecture. Moreover, scalability and reliability is now commonly achieved with clustering software rather than 
with hardware features. 



Breaking the Gene Sequencing Memory Barrier: In today’s highly virtualized enterprise environments, and for 
the memory hungry next generation sequencing technologies, users consider the memory capacity of a server to be 
more important than almost any other feature, according to IBM. Many servers utilize only a fraction of their CPU 
power. Most modern servers have to be rebalanced with far larger memory ranges per processor than previous 
designs. A key feature of eX5 is therefore its MAX5 snap-on memory expansion unit ("memory drawer") that 
enables up to double the memory capacity of the standard Intel-supplied chip set for Nehalem-EX that most other x86 
systems suppliers will use in their servers. Compared to server designs with smaller memory ranges, eX5 could 
deliver significant economic benefits in terms of requirements of the Next Generation Sequencing processes. Many 
of the NGS deployments are typically memory bound, rather than processor bound -- larger memory ranges mean 
that more reads can be deployed per socket. The superior memory ranges in eX5 will also be valuable for customers 
who want to deploy other classes of workloads on x86 servers such as very large databases. 

IBM’s Scale and flexibility: IBM originally started working on scalable and reliable memory management in the X-
Architecture with the intention of supporting large scale-up SMP servers for monolithic workloads. These
investments are now ready to pay off with IBM's Nehalem-EX systems, which may allow as many as 128 cores (the 
maximum supported by the eX5 architecture) to be harnessed in a single server footprint. This can tremendously 
boost the gene sequencing yield times given the scale and speed of processing power. 

IBM’s unique interconnect: Even on individual 2-socket servers, the larger memory range granted by MAX5 
drawers promises to deliver significantly better value relative to other Nehalem-EX –based platforms. IBM's 
implementation of MAX5 relies on the standard scalability port built into Nehalem-EX, but it also uses some IBM 
eX5 technology for linking computing modules. While competitors can duplicate functions that use Intel's standard 
scalability ports, the other functions are unique to IBM. 

Conclusion

The NGS research at the Sanger Institute is a typical example of how HPC is used in leading edge research in life 
sciences.IBM estimates that IT spending for NGS is conservatively $200M/year. Multiple industry studies indicate 
that revenue from HPC servers will continue to grow much faster than overall server revenues with clusters being the 
dominant platform –almost 70% of HPC servers16. However, these studies also suggest that the costs of server 
management, power and cooling, and facilities management in HPC data centers will outpace the costs of buying 
new servers. This has caused a severe crisis in HPC data centers. And IT solution providers such as IBM have 
responded by designing innovative solutions such as IBM’s Intel based eX5 with huge memory capacity that address 
these issues in running life sciences applications and NGS algorithms such as Velvet while retaining all the attractive 
attributes of industry standard cluster architectures for HPC. HPC users have always demanded computing solutions 
that have the best performance, price/performance, and now are increasingly demanding energy efficient platforms.

Over the last decade, with the widespread penetration of industry standard clusters, HPC capital expenses as a 
percentage of IT spend have decreased. However, the associated operational expenses to manage these higher 
computing density HPC data centers have escalated largely because of increased costs in systems administration, 
energy, and facilities. IBM eX5 series of servers perform excellently on a wide range of life sciences problems such 
as high memory requirements of Velvet and volume of output data generated through its super large memory 
footprint (512 GB). For a given price/performance, IBM provides flexible, reliable, simplified management solutions 
that are energy and power efficient and aimed at assisting scientists deal effectively with the compute and memory 
needs of resource hungry, complex and continuously evolving life sciences applications. For more details on IBM’s 
Intel based eX5 servers visit IBM eX5 product website (http://www-03.ibm.com/systems/info/x86servers/ex5/).
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