We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Accurately Detecting Single Nucleotide Variations in Individual Cells
News

Accurately Detecting Single Nucleotide Variations in Individual Cells

Accurately Detecting Single Nucleotide Variations in Individual Cells
News

Accurately Detecting Single Nucleotide Variations in Individual Cells

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Accurately Detecting Single Nucleotide Variations in Individual Cells"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

SingulOmics has announced the publication of data validating the company's core mission of producing a new, high quality amplification method and computational pipeline for single cell sequencing. The data demonstrate that the company's new system -- AccuSomatic Amplification for Single Cell Sequencing -- enables accurate detection of somatic single nucleotide variations (SNVs) in single cells not possible with any prior methods. The data are presented in a paper, "Accurate identification of single nucleotide variants in whole genome amplified single cells," published online on March 20, 2017 in Nature Methods (doi:10.1038/nmeth.4227).


AccuSomatic Amplification for Single Cell Sequencing, the result of years of research conducted at the Albert Einstein College of Medicine, New York, enables the discovery of true somatic SNVs in single cells that could not be accurately detected by any prior method. While single cell sequencing holds great promise for studying genetic heterogeneity in cancer and normal tissues, existing methods suffer from multiple sources of artifacts that can result in more than 20,000 false somatic SNV calls per cell and >90% false positive results. According to the research data, AccuSomatic Amplification eliminates >99% of errors in somatic SNV calls while maintaining the same detection sensitivity.  


"This is really a game changer for our research. We are interested in studying low, physiological levels of somatic SNVs and other mutations in single cells, but these were simply drowning in the high background we experienced with published protocols or commercially available systems," stated Jan Vijg, Ph.D., Chair, Department of Genetics, Albert Einstein College of Medicine and an investor and co-founder of SingulOmics. "We are entering a single cell genomics era as the cost of human genome sequencing plummets. This new method allows researchers to unlock the full potential of single cell sequencing in cancer, drug development, and aging research and greatly expands the capability of researchers to explore the landscapes of somatic mutations in human and other organisms beyond the reach of other amplification techniques available to date."


This article has been republished from materials provided by SingulOmics. Note: material may have been edited for length and content. For further information, please contact the cited source.


Reference


Dong, X., Zhang, L., Milholland, B., Lee, M., Maslov, A. Y., Wang, T., & Vijg, J. (2017). Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nature Methods. doi:10.1038/nmeth.4227

Advertisement