We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Agrivida and Codon Devices to Partner on Third-Generation Biofuels

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Biotech company Agrivida, founded in 2002 by researchers from MIT, has announced that it has entered into an agreement with Codon Devices, a synthetic biology company, for the discovery, development, and commercialization of engineered proteins for use in so-called 'third generation' biofuel applications.

Under the terms of this agreement, Codon Devices will deliver to Agrivida optimized enzymes to be embedded in crops for biofuels production.

Biofuel production techniques can be loosely divided into three generations: the 'first generation' consists of utilizing easily obtainable sugar, starch and oil resources (seeds, grains, roots) from crops to convert them into biofuels like biodiesel and ethanol; a 'second generation' relies on the conversion of entire crops via biochemical and thermochemical pathways (biomass-to-liquids, pyrolysis, enzymatic conversion of cellulose).

This allows for the use of a broader variety of biomass feedstocks. The 'third generation' would consist of engineering crops in such a way that their very properties are tailored to particular conversion processes to yield fuels and bioproducts. Examples of this are engineered trees with a low lignin content.

Agrivida, an agricultural biotechnology company, is developing such third generation biofuels by creating corn varieties optimized for producing ethanol. First generation methods for manufacturing ethanol make use of the corn grain only, leaving the remaining plant material, such as the corn leaves, stalks, and husks in the field.

 Central to Agrivida’s ethanol-optimized corn technology are engineered cellulase enzymes that are incorporated into the corn plants themselves (more here). These enzymes will efficiently degrade the entire mass of plant material into small sugars that can then be readily converted to ethanol (schematic, click to enlarge).

Under the agreement with Codon Devices, the latter company will utilize its BioLOGICTM Engineering Platform to develop enzymes optimized for use in Agrivida’s proprietary ethanol production technology. The optimized enzymes that Codon Devices will develop will incorporate Agrivida’s GreenGenes™ technology, allowing Agrivida to dramatically enhance cellulose degradation.

This collaboration underscores the value of our BioLOGICTM Engineering Platform for the rapid development of superior proteins with desired properties, such as enzymes with highly specialized functions.

With traditional approaches to developing such enzymes, this would be a one to two year project with no certainty of the outcome. In contrast, using our BioLOGIC™ Engineering Platform, we expect to be able to deliver these optimized enzymes to Agrivida in six to nine months. - Brian M. Baynes, Ph.D., Chief Scientific Officer of Codon Devices

The agreement further represents the unveiling of Codon Devices’ BioLOGIC Engineering Partnering Program under which partners can gain strategic access to the Company’s proprietary development technologies.

The BioLOGIC Engineering Platform combines sophisticated design algorithms with advanced assay and protein engineering capabilities to result in a revolutionary system for the rapid design, discovery and optimization of proteins for specific applications.

If successful, Agrivida and Codon's collaboration will usher in a new era for efficient biofuel production that may be transferred to other crops and processing technologies.