We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Biologists Develop Genome-wide map of miRNA-mRNA Interactions

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Researchers at New York University's Center for Comparative Functional Genomics and the University of California, Berkeley, have used computational analyses to predict a genome-wide map of microRNA targets in the animal model organism Caenorhabditis elegans (C. elegans).

MicroRNAs bind to messenger RNA in a specific section, called 3'UTR, and are known to regulate them.

Parts of the predicted map were confirmed through the development of an in vivo method that asked whether the 3' UTR part of mRNAs was driving regulation during development in a living organism. Their research appears in the recent issue of Current Biology.

In mapping miRNA targets, the research team examined the function of the genome of C. elegans. Using PicTar, an algorithm developed at NYU, the researchers predicted miRNA functions of C. elegans genes.

The researchers found that one-third of C. elegans miRNAs target gene sets have related functions.

That is, it appears that miRNAs can control groups of genes that work in a specific biological process. At least 10% of C. elegans genes are predicted miRNA targets.

To test the computational predictions, the NYU team developed an in vivo analysis system comparing the expression of a reporter, green fluorescent protein (GFP) carrying target 3' UTRs with controls, that did not carry the target 3'UTRs.

The laboratory results confirmed the role of specific 3' UTRs in suppressing gene expression even more widely than predicted by the computational analysis, suggesting that 3' UTRs contain a largely unexplored universe for gene regulation.

The thousands of genome-wide miRNA target predictions for nematodes, or roundworms, humans, and flies are available from the PicTar Web site and are linked to a graphical network-browsing tool developed in the NYU Center for Comparative Functional Genomics.

This is designed to allow exploration of miRNA target predictions in the context of various functional genomic data resources.