We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

BioNanomatrix Awarded NIH Grant for Development of Nanoscale Platform

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

BioNanomatrix, Inc. has announced receipt of a grant from the National Human Genome Research Institute of the U.S. National Institutes of Health (NIH).

Under the direction of BioNanomatrix principal investigator Dr. Ming Xiao, the two-year $399,020 project will develop a nanoscale platform for single-molecule haplotyping imaging and analysis of long strands of DNA at ultra-high resolution in a massively parallel format.

“We are pleased that the NIH has again recognized the potential of our revolutionary nanoscale single-molecule imaging and analysis technology by awarding us this new grant, which is explicitly intended to support the development of a platform to produce consistent linearization and imaging of individual DNA molecules, allowing for high resolution mapping of labeled genomic sites,” said Han Cao, Ph.D., chief scientific officer of BioNanomatrix.

“This added support will help us accelerate the development of the platform, which we believe could add significantly to the understanding of genetic diseases by increasing access to whole genome analysis and by allowing researchers to view and analyze the critical haplotype information that is currently difficult to obtain.”

The goal of the project is to develop a fully integrated nanochannel chip and reader capable of single-molecule mapping of linearized genomic material extracted directly from a sample, enabling direct visualization and analysis of long strands of DNA in context and at very high resolution.

The platform is designed to accommodate massively parallel analyses of individual DNA molecules to permit standardized, high-throughput mapping of sequence motifs or polymorphic sites along the DNA.