We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
deCODE Obesity Study Sheds Light on How Genetics Affects Risk and Onset of Common Diseases
News

deCODE Obesity Study Sheds Light on How Genetics Affects Risk and Onset of Common Diseases

deCODE Obesity Study Sheds Light on How Genetics Affects Risk and Onset of Common Diseases
News

deCODE Obesity Study Sheds Light on How Genetics Affects Risk and Onset of Common Diseases

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "deCODE Obesity Study Sheds Light on How Genetics Affects Risk and Onset of Common Diseases"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

In a paper published online in the journal Nature, a team of deCODE scientists detail a major mechanism through which genetic factors contribute to major public health problems.

In its work on the inherited components of dozens of common diseases, deCODE has discovered gene variants that significantly affect individual susceptibility or protection against disease. In the common forms of these conditions – such as obesity, type 2 diabetes and cardiovascular diseases – deCODE has previously shown that genetic variants confer increased or decreased risk by upregulating or downregulating the activity of major biological pathways.

As a result, these variants place individuals on a spectrum of risk, with most of the population clustered at roughly average risk and a smaller number of people at either significantly higher or lower risk.

In paper, the deCODE team and collaborators from Merck demonstrate one of the principal ways in which the activity of biological pathways is functionally perturbed in a quintessentially complex condition: obesity. Through analysis of adipose tissue from some 1700 Icelandic participants in obesity research cohorts, the deCODE team showed in data derived from primary human tissue that variations in gene expression – in the up-regulation or downregulation of how genes are translated into proteins – have a major impact on several parameters of clinical obesity.

The deCODE team then used its unique resources for genome-wide linkage and association analysis to demonstrate that variability in gene expression, like overall risk for disease, has a significant inherited component that can be linked to specific versions of genetic markers.

The paper, “Genetics of gene expression and its effect on disease,” is published on Nature’s website, www.nature.com, and will appear in a subsequent print edition of the journal.

Advertisement