We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Discovery of Reversible "Master Switch" Sheds Light on Regulation of Developmental Genes
News

Discovery of Reversible "Master Switch" Sheds Light on Regulation of Developmental Genes

Discovery of Reversible "Master Switch" Sheds Light on Regulation of Developmental Genes
News

Discovery of Reversible "Master Switch" Sheds Light on Regulation of Developmental Genes

Credit: Michael Worful
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Discovery of Reversible "Master Switch" Sheds Light on Regulation of Developmental Genes "

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

In a paper published in Genes & Development, BWH principal investigator Mitzi Kuroda, PhD, and her team identified a reversible "master switch" on most developmental genes. The team unearthed this biological insight through studies in the fruit fly -- a powerful model organism for studying how human genes are organized and function.


The human genome contains billions of DNA "letters," that can only be read as words, phrases and sentences with the help of proteins that, metaphorically, mark the DNA with punctuation. Together, the DNA-protein combinations form chromatin which provides the essential annotation for gene transcription. However, it is still not understood how the annotation and readout of a single genome differs across cell types. The differences are crucial for normal development and are mutated in cancer. Currently, it is thought that different combinations of proteins act at each of the thousands of genes, and deciphering the numerous complex patterns is a difficult task.


In Kang et al., the Kuroda lab identifies a reversible "master switch" that sits on potentially all developmental genes in a model organism, the fruit fly. Their bivalent master switch model provides a conceptually simple explanation for how each developmental step is made along the path to different cell types, dependent on cell type-specific proteins, but acting through this common module.


In this case the fly model is likely to extend and synergize with seminal work by Harvard Medical School professor Brad Bernstein, MD, PhD, and colleagues on the regulation of key developmental genes in mammalian embryos.


This article has been republished from materials provided by Brigham and Women's Hospital. Note: material may have been edited for length and content. For further information, please contact the cited source.


Reference


Kang, H., Jung, Y. L., McElroy, K. A., Zee, B. M., Wallace, H. A., Woolnough, J. L., ... & Kuroda, M. I. (2017). Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in Drosophila. Genes & Development, 31(19), 1988-2002.

Advertisement