We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience, read our Cookie Policy

Advertisement

DNA Replication Depends on High Speed Electron Transport

News   Feb 28, 2017 | Original story from California Institute of Technology

 
DNA Replication Depends on High Speed Electron Transport

A protein called DNA primase (tan) begins to replicate DNA when an iron-sulfur cluster within it is oxidized, or loses an electron (blue and purple). Once this primase has made an RNA primer, a protein signaling partner, presumably DNA polymerase alpha (blue), sends an electron from its reduced cluster, which has an extra electron (yellow and red). The electron travels through the DNA/RNA helix to primase, which comes off the DNA. This electron transfer signals the next steps in replication. Credit: Caltech

 
 
Advertisement
 

RELATED ARTICLES

Study Reveals Potential Gene Behind “Glowing” of Sea Pickle

News

A new study describes a bioluminescent gene that could be the reason that so-called "sea pickles," or pyrosomes, an underwater free-floating colony of thousands of tiny animals, reverberate in blue-green light.

READ MORE

Climate Is a Likely Barrier to the Spread of Africanized Bees

News

Since the 1950s, “Africanized” honeybees have spread north and south across the Americas until apparently coming to a halt in California and northern Argentina. Now genome sequencing of hundreds of bees from the northern and southern limits shows a gradual decline in African ancestry across hundreds of miles, rather than an abrupt shift.

READ MORE

Uncovering a Novel Mechanism for Disposing of Misfolded Proteins

News

About 30 years ago, Dr. Richard Sifers set out on a journey to discover why people with a rare condition known as alpha1-antitrypsin (AAT) deficiency present with high variation in the severity of liver disease. His journey led him to the discovery of fundamental underpinnings of this condition and, unexpectedly, to uncovering a novel cellular mechanism for disposing of misfolded proteins.

READ MORE

 

Like what you just read? You can find similar content on the communities below.

Drug Discovery Proteomics & Metabolomics

To personalize the content you see on Technology Networks homepage, Log In or Subscribe for Free

LOGIN SUBSCRIBE FOR FREE