We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Enabling microRNA Discoveries - LC Sciences Tops 100th Customer Publication

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute
LC Sciences announces the publication of the 100th peer-reviewed study by one of its customers using the company’s microarray service for analyzing microRNA (miRNA) expression profiles and for discovery of novel small RNAs. These studies, by leading researchers in the field, contribute to a fast growing body of knowledge defining this recently discovered class of regulatory RNAs.

To date, miRNAs have proven to be extremely important part of the gene expression regulation mechanism. Expression profiling and functional studies conducted so far indicate that miRNAs participate in the regulation of almost every cellular process investigated and this is evident in the amount of relevant findings being translating into published reports.

The publications to date by LC Sciences’ customers span a diverse range of study areas, including cancer research, neuroscience, cardiovascular research, MicroRNA Publications reproductive biology, plant science, virology, stem cell research, immunology, and small RNA discovery. Their miRNA profiling service has provided a tool for many researchers to explore and examine a wide assortment of miRNA cellular networks and the resulting publications are often the first description of miRNA activity in these systems.

LC Sciences’ miRNA profiling service, powered by its µParaflo® microfluidic technology, provides fully analyzed data enabling researchers to immediately move forward with innovative research, and publish their results faster. Microarray results require extensive validation prior to publication. The speed with which researchers using this miRNA profiling service have published their discoveries demonstrates the high-quality and reliability of these results.

The 100th study, entitled “MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2” appeared in the September issue of The Journal of Immunology and was one of a group of articles published recently by LC Sciences’ customers describing miRNA involvement in the immune system.

Researchers at the National Key Laboratory of Medical Immunology, China studied the fine tuning effect that miRNA has on inflammatory response to viral infection and even propose a new mechanism for the evasion of innate immune control by viruses. MiRNA microarray data revealed, and real-time quantitative PCR confirmed, many up-regulated miRNAs in vesicular stomatitis virus (VSV) infected mouse macrophages. Specifically miR-146a expression was significantly up-regulated.

Further studies revealed that miR-146a negatively regulated VSV-triggered interferon production (which is necessary to exert feedback control over inflammation) promoting VSV replication in macrophages.

The identification of miRNAs and a better understanding of their expression in response to various stimuli/pathogens may reveal that miRNAs offer multiple new therapeutic targets/strategies for fine tuning the immune response to treat and prevent of a number of inflammatory diseases.