We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
FTIR Spectroscopy as a Method to Study Lipid Accumulation in Oleaginous Yeasts
News

FTIR Spectroscopy as a Method to Study Lipid Accumulation in Oleaginous Yeasts

FTIR Spectroscopy as a Method to Study Lipid Accumulation in Oleaginous Yeasts
News

FTIR Spectroscopy as a Method to Study Lipid Accumulation in Oleaginous Yeasts

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "FTIR Spectroscopy as a Method to Study Lipid Accumulation in Oleaginous Yeasts"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Background:
Oleaginous microorganisms, such as different yeast and algal species, can represent a sustainable alternative to plant oil for the production of biodiesel. They can accumulate fatty acids (FA) up to 70% of their dry weight with a predominance of (mono)unsaturated species, similarly to what plants do, but differently from animals. In addition, their growth is not in competition either with food, feed crops, or with agricultural land.Despite these advantages, the exploitation of the single cell oil system is still at an early developmental stage. Cultivation mode and conditions, as well as lipid extraction technologies, represent the main limitations. The monitoring of lipid accumulation in oleaginous microorganisms is consequently crucial to develop and validate new approaches, but at present the majority of the available techniques is time consuming, invasive and, when relying on lipid extraction, can be affected by FA degradation.

Results:
In this work the fatty acid accumulation of the oleaginous yeasts Cryptococcus curvatus and Rhodosporidium toruloides and of the non-oleaginous yeast Saccharomyces cerevisiae (as a negative control) was monitored in situ by Fourier Transform Infrared Spectroscopy (FTIR). Indeed, this spectroscopic tool can provide complementary information to those obtained by classical techniques, such as microscopy, flow cytometry and gas chromatography. As shown in this work, through the analysis of the absorption spectra of intact oleaginous microorganisms it is possible not only to monitor the progression of FA accumulation but also to identify the most represented classes of the produced lipids.

Conclusions:
Here we propose FTIR microspectroscopy - supported by multivariate analysis - as a fast, reliable and non invasive method to monitor and analyze FA accumulation in intact oleaginous yeasts. The results obtained by the FTIR approach were in agreement with those obtained by the other classical methods like flow cytometry and gas chromatography. Moreover, the possibility to track lipid production in real time is highly desirable to support the initial screening of strains and media as well as to optimize the scaling up experiments, which are essential for a viable and successful development of an industrial production process.

The article is published online in the journal Biotechnology for Biofuels and is free to access.

Advertisement