We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Gene Expression Data Is Being Widely Misinterpreted
News

Gene Expression Data Is Being Widely Misinterpreted

Gene Expression Data Is Being Widely Misinterpreted
News

Gene Expression Data Is Being Widely Misinterpreted

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Gene Expression Data Is Being Widely Misinterpreted"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Reproducibility of research data is a major challenge in experimental biology. As data generated by genomic-scale techniques increases in complexity, this concern is becoming more and more worrisome.

RNA-seq, one of the most widely used methods in modern molecular biology, allows in a single test the simultaneous measurement of the expression level of all genes in a given sample. New research by a Tel Aviv University group identifies a frequent technical bias in data generated by RNA-seq technology, which often leads to false results.

The study was conducted by Dr. Shir Mandelbaum, Dr. Zohar Manber, Dr. Orna Elroy-Stein and Dr. Ran Elkon at TAU's Sackler Faculty of Medicine and George S. Wise Faculty of Life Sciences and was published  in PLOS Biology.

"Recent years have witnessed a growing alarm about false results in biological research, sometimes referred to as the reproducibility crisis," Dr. Elkon, lead author of the study, says. "This study emphasizes the importance of proper statistical handling of data to lessen the number of misleading findings."

A main goal of RNA-seq experiments is to characterize biological processes that are activated or repressed in response to different conditions. The researchers analyzed dozens of publicly available RNA-seq datasets to profile the cellular responses to numerous stresses.

During the research, the scientists noticed that sets of particularly short or long genes repeatedly showed changes in the expression level measured by the apparent number of RNA transcripts from a given gene. Puzzled by this recurring pattern, the team wondered whether it reflected some universal biological response common to different triggers or whether it stemmed from some experimental condition.

To tackle this question, they compared replicated samples from the same biological condition. Differences in gene expression between replicates can reflect technical effects that are not related to the experiment's biological factor of interest. Unexpectedly, the same pattern of particularly short or long genes showing changes in expression level was observed in these comparisons between replicates. This pattern is the result of a technical bias that seemed to be coupled with gene length, the researchers say.

Importantly, the TAU researchers were able to show how the length bias they detected in many RNA-seq datasets led to the false identification of specific biological functions as cellular responses to the conditions tested.

"Such misinterpretation of the data could lead to completely misleading conclusions," Dr. Elkon concludes. "In practical terms, the study also shows how this bias can be removed from the data, thus filtering out false results while preserving the biologically relevant ones."

Reference: Mandelboum, Manber, Elroy-Stein and Elkon. (2019). Recurrent functional misinterpretation of RNA-seq data caused by sample-specific gene length bias. PLOS Biology. DOI: https://doi.org/10.1371/journal.pbio.3000481. 

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Advertisement