We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Genetic 'Wiring' of Seeds Revealed
News

Genetic 'Wiring' of Seeds Revealed

Genetic 'Wiring' of Seeds Revealed
News

Genetic 'Wiring' of Seeds Revealed

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Genetic 'Wiring' of Seeds Revealed"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

via ScienceDaily (May 18, 2011) — The genetic 'wiring' that helps a seed to decide on the perfect time to germinate has been revealed by scientists for the first time. Plant biologists at The University of Nottingham have also discovered that the same mechanism that controls germination is responsible for another important decision in the life cycle of plants -- when to start flowering.

Their discovery throws light on the genetic mechanisms that plants use to detect and respond to vital environmental cues and could be a significant step towards the development of new crop species that are resistant to climate change and would help secure future food supplies.
Seeds in the soil sense a whole range of environmental signals including temperature, light, moisture and nutrients, when deciding whether to germinate or to remain dormant.
To ensure that the decision for a seed to germinate is made at the perfect moment to ensure survival, evolution has genetically 'wired' seeds in a very complex way to avoid making potentially deadly mistakes.

The breakthrough has been made by scientists at Nottingham's Division of Crop and Plant Sciences who collaborate within one of the University's Research Priority Groups, Global Food Security. The team compiled publicly available gene expression data and used a systematic statistical analysis to untangle the complex web of genetic interactions in a model plant called Arabidopsis thaliana or thale cress. The plant is commonly used for studying plant biology as changes in the plant are easily observed and it was the first plant to have its entire genome sequenced.

The resulting gene network -- or SeedNet as it was dubbed -- highlighted what little scientists already know about the regulation of seed germination while being able to predict novel regulators of this process with remarkable accuracy.

Advertisement