We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
How Cells Keep DNA Tangle-free
News

How Cells Keep DNA Tangle-free

How Cells Keep DNA Tangle-free
News

How Cells Keep DNA Tangle-free

Credit: Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "How Cells Keep DNA Tangle-free"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

A process that cells use to unravel knotted strands of DNA - resembling a method used to control climbing ropes - has been uncovered by scientists.

The findings help explain how about 2 metres of DNA can be neatly packaged in each of our cells, in a space that is about the width of a hair.

Scientists have identified two sets of proteins in cells that work together to keep the strands unknotted, avoiding tangles that would hamper vital biological processes.

These proteins are found in many organisms, and scientists believe that their role in managing DNA may be common throughout nature.

One family of proteins - known as SMC - acts like a belay device used by rock climbers, which passes ropes through a series of loops.

These proteins have been found to work alongside another set, known as TopoII, which was previously thought to help solve tangles, but in a way that was not well understood.

Researchers at the Universities of Edinburgh and Padova in Italy studied the process by creating computer models of DNA with knots and links.

They found that SMC acts like a belay, sliding back and forth to enlarge or reduce loops in linked segments of DNA. Knots are first squeezed and compressed by SMC, and subsequently they are easily detected and resolved by TopoII.

Their study is the first to explain how the two families of proteins keep DNA tangle-free under the confined, crowded conditions of the cell. The research, published in Proceedings of the National Academy of Science, was supported by the European Research Council.

Dr Davide Michieletto, of the University of Edinburgh's School of Physics and Astronomy, who led the study, said: "DNA's long strands might be expected to become horribly tangled - a bit like pulling knotted headphones out of your pocket. But instead, nature has created these amazing machines to address this problem in a remarkable way, seemingly across many species."

This article has been republished from materials provided by the University of Edinburgh. Note: material may have been edited for length and content. For further information, please contact the cited source.

Reference: Enzo Orlandini, Davide Marenduzzo, and Davide Michieletto. 2019. Synergy of topoisomerase and structural-maintenance-of-chromosomes proteins creates a universal pathway to simplify genome topology. Proceedings of the National Academy of Science. DOI: https://doi.org/10.1073/pnas.1815394116.

Advertisement