We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.


How Do Sunflowers See the Sun?

A sunflower.
Credit: Michelle Francisca Lee / Unsplash.
Listen with
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 2 minutes

Sunflowers famously turn their faces to follow the sun as it crosses the sky. But how do sunflowers “see” the sun to follow it? New work from plant biologists at the University of California, Davis, published Oct. 31 in PLOS Biology, shows that they use a different, novel mechanism from that previously thought.

“This was a total surprise for us,” said Stacey Harmer, professor of plant biology at UC Davis and senior author on the paper.

Most plants show phototropism – the ability to grow toward a light source. Plant scientists had assumed that sunflowers’ heliotropism, the ability to follow the sun, would be based on the same basic mechanism, which is governed by molecule called phototropin and responds to light at the blue end of the spectrum.

Want more breaking news?

Subscribe to Technology Networks’ daily newsletter, delivering breaking science news straight to your inbox every day.

Subscribe for FREE

Sunflowers swing their heads by growing a little more on the east side of the stem – pushing the head west – during the day and a little more on the west side at night, so the head swings back toward the east. Harmer’s lab at the UC Davis College of Biological Sciences has previously shown how sunflowers use their internal circadian clock to anticipate the sunrise, and to coordinate the opening of florets with the appearance of pollinating insects in the morning.

In the new study, graduate student Christopher Brooks, postdoctoral researcher Hagatop Atamian and Harmer looked at which genes were switched on (transcribed) in sunflowers grown indoors in laboratory growth chambers, and in sunflowers growing in sunlight outdoors.

Indoors, sunflowers grew straight toward the light, activating genes associated with phototropin. But the plants grown outdoors, swinging their heads with the sun, showed a completely different pattern of gene expression. There was no apparent difference in phototropin between one side of the stem and another.

The researchers have not yet identified the genes involved in heliotropism.

“We seem to have ruled out the phototropin pathway, but we did not find a clear smoking gun,” Harmer said.

Blocking blue, ultraviolet, red or far-red light with shade boxes had no effect on the heliotropism response. This shows that there are likely multiple pathways, responding to different wavelengths of light, to achieve the same goal. Upcoming work will look at protein regulation in the plants.

Sunflowers are quick learners. When plants grown in the lab were moved outdoors, they started tracking the sun on the first day, Harmer said. That behavior was accompanied by a burst of gene expression on the shaded side of the plant that did not recur on subsequent days. That suggests some kind of “rewiring” is going on, she said.

Apart from revealing previously unknown pathways for light-sensing and growth in plants, the discovery has broad relevance, Harmer said.

“Things that you define in a controlled environment like a growth chamber may not work out in the real world,” she said. 

Reference: : Brooks CJ, Atamian HS, Harmer SL. Multiple light signaling pathways control solar tracking in sunflowers. PLoS Biol. (2023) 21(10):
e3002344. doi: 10.1371/journal.pbio.300234

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.