We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
How Proteins Control Gene Expression by Binding both DNA and RNA
News

How Proteins Control Gene Expression by Binding both DNA and RNA

How Proteins Control Gene Expression by Binding both DNA and RNA
News

How Proteins Control Gene Expression by Binding both DNA and RNA

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "How Proteins Control Gene Expression by Binding both DNA and RNA"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Proteins that bind DNA or RNA are usually put in different categories, but researchers at Umeå University in Sweden and Inserm in France recently showed how the p53 protein has the capacity to bind both and how this controls gene expression on the levels of both transcription (RNA synthesis) and mRNA translation (protein synthesis). 

The p53 tumour suppressor protein is best known for its capacity to bind DNA and control gene expression at the level of transcription. Mutations that abolish the DNA binding activity are frequently found in human cancers. However, it has been known that p53 also harbours RNA binding capacity but this capacity and its cell biological role has been vastly overshadowed by its DNA-binding activity.

Together with his collaborators, Robin Fåhraeus, guest professor at the Department of Medical Biosciences at Umeå University and Research Director at Inserm in France, could show that p53 suppresses the synthesis of its negative regulator MDMX via a direct interaction between p53 and the MDMX mRNA. The researchers also show that RNA binding per se is not sufficient to suppress MDMX synthesis and that an additional trans-suppressor domain of p53 is also required. A classic p53 mutation that prevents DNA binding was shown to have differentiated activity towards MDMX synthesis.

“We found mutant p53 proteins that do not bind DNA instead have an effect towards mRNA translation,” says Robin Fåhraeus, who led the study. “It has been known that mutant p53s can promote tumour growth but it is not clear what lies behind this activity and RNA binding offers one possibility.”

Advertisement