We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Rectangle Image
News

How to Control Shape, Structure of DNA and RNA

Rectangle Image
News

How to Control Shape, Structure of DNA and RNA

Read time:
 

The work holds promise for developing applications that can store and transport genetic information, create custom scaffolds for bioelectronics and create new drug delivery technologies.

"In nature, meters of DNA are packed tightly into every living cell," says Jessica Nash, a Ph.D. student at NC State and lead author of a paper on the work. "This is possible because the DNA is wrapped tightly around a positively charged protein called a histone. We'd like to be able to shape DNA using a similar approach that replaces the histone with a charged gold nanoparticle. So we used computational techniques to determine exactly how different charges influence the curvature of nucleic acids - DNA and RNA."

In their model, the researchers manipulated the charge of the gold nanoparticles by adding or removing positively charged ligands - organic molecules attached to the surface of the nanoparticle. This allowed them to determine how the nucleic acid responded to each level of charge. An animation of a nanoparticle and ligands shaping a strand of DNA is available on the further information link below.

"This will let researchers know what to expect - how much charge they need in order to get the desired curvature in the nucleic acid," says Yaroslava Yingling, an associate professor of materials science and engineering at NC State and corresponding author of the paper.

"We used ligands in the model, but there are other ways to manipulate the charge of the nanoparticles," says Abhishek Singh, a postdoctoral researcher at NC State and co-author of the paper. "For example, if the nanoparticles and nucleic acid are in solution, you can change the charge by changing the pH of the solution."

The work is also significant because it highlights how far computational research has come in materials science.

"Our large-scale models account for every atom involved in the process," says Nan Li, a Ph.D. student at NC State and co-author of the paper. "This is an example of how we can use advanced computational hardware, such as the GPUs - or graphics processing units - developed for use in videogames, to conduct state-of-the-art scientific simulations."

The research team is now building on these findings to design new nanoparticles with different shapes and surface chemistries to get even more control over the shape and structure of nucleic acids.

"No one has come close to matching nature's efficiency when it comes to wrapping and unwrapping nucleic acids," Yingling says. "We're trying to advance our understanding of precisely how that works."

Advertisement