Kraig Biocraft Laboratories Announces Peer Reviewed Publication of Spider Silk and Transgenic Silkworm Breakthroughs
Complete the form below to unlock access to ALL audio articles.
The article is the first peer-reviewed scientific publication describing the creation of transgenic silkworms, which have been specifically designed to spin a spider/silkworm silk fusion fiber. The article's abstract states, "these composite fibers were, on average, tougher than the parental silkworm silk fibers and as tough as native dragline spider silk fibers. These results demonstrate that silkworms can be engineered to manufacture composite silk fibers containing stably integrated spider silk protein sequences, which significantly improve the overall mechanical properties of the parental silkworm silk fibers."
"The fact that a publication as prestigious as Proceedings of the National Academy of Sciences has chosen to publish these results speaks for itself as to the significance of the scientific breakthrough," said Company founder and CEO, Kim K Thompson. "When I founded Kraig many people in both the business and scientific community said that what we were setting out to do was impossible. By maintaining a focused vision and by recruiting the very best minds in molecular biology, we have made the impossible a tangible reality."
"Congratulations to the scientific team as well as to the University of Notre Dame and the University of Wyoming. They deserve the accolades they are receiving with this publication," continued Thompson. "Our next steps are to commercialize these developments while accelerating our development of even more advanced products. The commercial license agreement we signed in the fourth quarter of 2011 was an essential element of the former. As we move toward commercialization of these fibers, we are simultaneously moving into an advanced stage in the development of new, second generation spider silk polymers."
The scientific article described above is published, online before print, January 3, 2012, by the scientific journal Proceedings of the National Academy of Sciences, titled, "Silkworms Transformed with Chimeric Silkworm/Spider Silk Genes Spin Composite Silk Fibers with Improved Mechanical Properties."
"The recent publication of the analysis of genetically engineered silkworms to produce chimeric spider silks with properties of increased strength and flexibility in the prestigious journal Proceedings of the National Academy of Sciences represents a significant vindication of our methodology for genetically engineering and producing commercial quantities of novel protein fibers for medical, structural, and textile fabrics," said Dr. Malcolm Fraser. "If it were not for Kraig Biocraft Laboratories initiating this project and bringing the technologies together these results may never have materialized."
"The work is the culmination of a research effort begun more than 10 years ago with an internal award from the University of Notre Dame to my lab to develop silkworm transgenics capabilities, a two year NIH R21 grant awarded to Drs. Jarvis, Lewis, and myself, and several years of supplemental funding from Kraig Biocraft Laboratories," Fraser continued. "The success of this research would have been impossible without the ability to carry out silkworm transgenesis, mastered by Bong-hee Sohn and Young-soo Kim in the Fraser lab at the University of Notre Dame. This manuscript was published after an in depth peer review process, and was deemed by the publishers as a newsworthy article of the issue in which it appears, further indicating its relative importance to science and technology."