We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.


MIT's MicroRNA 'Sponges' Could Aid Cancer Studies

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "MIT's MicroRNA 'Sponges' Could Aid Cancer Studies"

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Read time:

MIT researchers have developed a new way to study the function of microRNA, tiny strands of genetic material that help regulate at least 25 percent of a cell's genes.

The new technique could shed light on microRNA's hypothesized role in tumor development. Malfunctions in microRNA have been linked with cancer, but very few direct relationships have been established between specific microRNAs and the genes they regulate.

That could change, however, now that MIT Institute Professor Phillip Sharp and his colleagues have found a way to inhibit the activity of microRNA by genetically altering cells.

The technique, described in the August 12 online issue of Nature Methods, could "provide a tool to identify specific genes that are being regulated by microRNAs," said Sharp.

MicroRNA consists of short strings of about 22 nucleotides, the building blocks that make up RNA and DNA. MicroRNA binds to messenger RNA (mRNA), preventing it from delivering protein assembly instructions, thereby inhibiting gene expression.

Sharp, who is affiliated with MIT's Biology Department and Center for Cancer Research, said microRNA exists in every cell and controls a wide range of cell regulatory activities.

The MIT team has found a way to block microRNA activity by tricking cells into producing a microRNA "sponge," which soaks up microRNA and renders it ineffective. By de-activating microRNA, researchers can observe the resulting effects and determine which genes the microRNA is targeting.

The new technique could shed more light on microRNA's role in tumor development: Earlier studies have shown that a type of microRNA known as let-7 inhibits a cancer-inducing gene called RAS. Abnormally low levels of let-7 have been found in some types of tumor, said Sharp.

Sharp and MIT biology graduate student Margaret Ebert, lead author of the paper, decided to block microRNA activity by creating a gene that produces microRNA sponges and inserting it into their target cells. Each sponge can bind up to six microRNA molecules, but they could be engineered to bind more.

The sponge gene also includes a "reporter" gene that causes the cell to become fluorescent if it has taken up the gene, so the researchers can know for sure whether the microRNA sponge is being produced in a particular cell.

Ebert said the new sponge technique is an improvement over an older method that involves blocking microRNA activity with artificially synthesized strands of RNA, known as oligos. One advantage is the inclusion of the reporter gene; another is that the sponge genes can be expressed continuously, while oligos do not remain in the cell forever.

More importantly, the sponge technique could be used to create transgenic animals that express the sponge in all of their cells, allowing researchers to study microRNA function at the organismal level. With such animals, sponge genes could be designed so that the researchers can control when and where they are expressed.

Joel Neilson, a postdoctoral associate in the Center for Cancer Research, is also an author on the paper. The research was funded by the National Cancer Institute, the National Institutes of Health, a Howard Hughes Medical Institute Predoctoral Fellowship, a Paul and Cleo Schimmel Scholarship, and the Cancer Research Institute.