We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Mutations Behind the Omicron Variant’s High Rate of Infection Identified

Mutations Behind the Omicron Variant’s High Rate of Infection Identified content piece image
Credit: iXimus/ Pixabay
Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

While the Omicron variant continues to infect people around the world, researchers at the University of Missouri have identified the highly prevalent, specific mutations that are causing the Omicron variant’s high rate of infection.


The findings help explain how the new variant can escape pre-existing antibodies present in the human body, either from vaccination or naturally from a recent COVID-19 infection.


“We know that viruses evolve over time and acquire mutations, so when we first heard of the new Omicron variant, we wanted to identify the mutations specific to this variant,” said Kamlendra Singh, a professor in the MU College of Veterinary Medicine, assistant director of the MU Molecular Interactions Core and Bond Life Sciences Center investigator.


Singh collaborated with Saathvik Kannan, a freshman at Hickman High School in Columbia, Missouri, and Austin Spratt, an undergraduate student at MU, and Sid Byrareddy of the University of Nebraska Medical Center, to analyze protein sequences of Omicron samples from around the world, including South Africa, Botswana and the United States. The team identified 46 highly prevalent mutations specific to Omicron, including several located in the region of the virus’ spike protein where antibodies bind to the virus in order to prevent infection.


“The purpose of antibodies is to recognize the virus and stop the binding, which prevents infection,” Singh said. “However, we found many of the mutations in the Omicron variant are located right where the antibodies are supposed to bind, so we are showing how the virus continues to evolve in a way that it can potentially escape or evade the existing antibodies, and therefore continue to infect so many people.”


As antiviral treatments for individuals infected with COVID-19 continue to be developed, Singh explained that having a better understanding of how the virus is evolving will help ensure future antiviral treatments will be targeted toward the specific parts of the virus to produce the most effective outcomes.


In a recent trip to his native India, Singh met with Manish Sisodia, the deputy chief minister of Delhi, to discuss the launch of CoroQuil-Zn, a supplement that can be taken while infected with COVID-19 to help reduce one’s viral load. The supplement, which Singh helped to develop, is now being used by patients in Tamil Nadu, a state in India. The manufacturer will soon seek FDA approval for its distribution in the United States.


“The first step toward solving a problem is getting a better understanding of the specific problem in the first place,” Singh said. “It feels good to be contributing to research that is helping out with the pandemic situation, which has obviously been affecting people all over the world.”


Reference: Kannan SR, Spratt AN, Sharma K, Chand HS, Byrareddy SN, Singh K. Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. J. Autoimmun. 2022;126:102779. doi: 10.1016/j.jaut.2021.102779


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.