We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

New Generation of siRNA Could Enable New RNA Therapies

New Generation of siRNA Could Enable New RNA Therapies

New Generation of siRNA Could Enable New RNA Therapies

New Generation of siRNA Could Enable New RNA Therapies

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "New Generation of siRNA Could Enable New RNA Therapies"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

In a new study published in Cell Research, researchers at  Nanjing University report that a new developments in synthetic biology could allow a type of gene therapy to acheive major therapeutic advances.

The development of RNAi therapy has undergone two major stages, direct injection of synthetic siRNAs and delivery with
artificial vehicles; both have not realized the full therapeutic potential of RNAi in clinic. In this study, Chen-Yu Zhang's group reprogram host liver with genetic circuits to direct the synthesis and self-assembly of siRNAs into secretory exosomes. In vivo assembled siRNAs are systematically distributed to multiple tissues or targeted to specific tissues (e.g., brain), inducing potent target gene silencing in these tissues. The therapeutic value of this strategy is demonstrated in a variety of diseases ranging from cancers to metabolic diseases. Overall, in vivo self-assembled siRNA represents a next generation RNAi therapeutics, which makes RNAi therapy feasible.

The scientific significance of these findings is highlighted below:

The lack of a safe and efficient in vivo delivery system remains a major obstacle to the clinical translation of RNAi therapy. This study reprograms the native circulating exosome system of mammals with artificial genetic circuits to facilitate the transfer of siRNA in vivo. This strategy re-conceptualizes delivery vehicles as “medicines” instead of “agents”, thus avoiding the safety and efficiency concerns associated with conventional delivery techniques.

(2) Most human diseases are caused by the mutation or dysfunction of multiple genes. The design of in vivo self-assembled siRNAs offers the co-expression of tandem siRNAs and simultaneous silencing of multiple genes in vivo (e.g. EGFR and TNC in glioma), thus allowing precise control of gene expression in a purpose-driven mode.

(3) Since in vivo self-assembled siRNAs are delivered by circulating exosomes, specific tissue targeting may be achieved by the co-expression of tissue-specific protein tags on exosome membrane. Thus, in vivo self-assembled siRNAs can be directed to specific tissues, especially for those with biological barriers (e.g., blood-brain-barrier). 

This study is the first attempt to combine genetic circuits with native exosome circulating system to achieve gene silencing in vivo. Self-assembled siRNAs may be a novel gene silencing tool for studying gene function in vivo.

 “With these findings”, Chen-Yu Zhang added, “we believe that this study is very important for addressing the urgent topics in biomedicine and will be of broad interest to biomedical researchers and pharmaceutical industries”. 


Fu Z, Zhang X, Zhou X, et al. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics. Cell Research. Published online March 29, 2021:1-18. doi:10.1038/s41422-021-00491-z

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.