We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

New Strategy for Drought Tolerance in Crops: Shutting Down the Plant's Growth Inhibition Under Mild Stress

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: Less than a minute

via ScienceDaily (May 18, 2011) — VIB/UGent researchers have unveiled a mechanism that can be used to develop crop varieties resistant to mild droughts. For years, improving drought tolerance has been a major aim of academic and industrial research, thereby focusing on effects of extreme 

In a set of papers in Nature Biotechnology and the Plant Cell, the team of Dirk Inzé at the VIB Department of Plant Systems Biology, UGent now shows that the focus should be on mild drought stress instead. It turns out that under non-lethal stress conditions plants inhibit growth more than absolutely necessary, opening new opportunities for yield improvement.

"By applying this knowledge to the selection of new crop varieties, unnecessary yield losses through drought stress can be avoided, resulting in higher productivity," Dirk Inzé from VIB-UGent said.

Producing more food with less water

Only recently the World Bank warned that the world is facing a devastating food price crisis, with yield losses due to weather events being named one of the components of this complex problem. Producing more food on limited arable land, considering the increasing scarcity of water and unpredictability of the weather due to global warming, will be one of the major challenges for this century. One way to increase crop productivity is targeting drought stress, which is currently the main factor decreasing actual yields. Research in this area however so far largely failed to result in crops that perform better in drought conditions.