We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
NIH Announces new Program to Develop Therapeutics for Rare and Neglected Diseases
News

NIH Announces new Program to Develop Therapeutics for Rare and Neglected Diseases

NIH Announces new Program to Develop Therapeutics for Rare and Neglected Diseases
News

NIH Announces new Program to Develop Therapeutics for Rare and Neglected Diseases

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "NIH Announces new Program to Develop Therapeutics for Rare and Neglected Diseases"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

The National Institutes of Health is launching the first integrated, drug development pipeline to produce new treatments for rare and neglected diseases. The $24 million program jumpstarts a trans-NIH initiative called the Therapeutics for Rare and Neglected Diseases program, or TRND.

The program is unusual because TRND creates a drug development pipeline within the NIH and is specifically intended to stimulate research collaborations with academic scientists working on rare illnesses.

The NIH Office of Rare Diseases Research (ORDR) will oversee the program, and TRND's laboratory operations will be administered by the National Human Genome Research Institute (NHGRI), which also operates the NIH Chemical Genomics Center (NCGC), a principal collaborator in TRND. Other NIH components will also participate in the initiative.

A rare disease is one that affects fewer than 200,000 Americans. NIH estimates that, in total, more than 6,800 rare diseases afflict more than 25 million Americans. However, effective pharmacologic treatments exist for only about 200 of these illnesses. Many neglected diseases also lack treatments.

Unlike rare diseases, however, neglected diseases may be quite common in some parts of the world, especially in developing countries where people cannot afford expensive treatments. Private companies seldom pursue new therapies for these types of illnesses because of high costs and failure rates and the low likelihood of recovering investments or making a profit.

"NIH is eager to begin the work to find solutions for millions of our fellow citizens faced with rare or neglected illnesses," said NIH Acting Director Raynard S. Kington, M.D., Ph.D. "The federal government may be the only institution that can take the financial risks needed to jumpstart the development of treatments for these diseases, and NIH clearly has the scientific capability to do the work."

"This initiative is really good news for patients with rare or neglected diseases," said ORDR Director Stephen C. Groft, Pharm.D. "While Congress has previously taken important steps to help these patients, such as providing incentives for drug companies under the Orphan Drug Act, this is the first time NIH is providing support for specific, preclinical research and product development known to be major barriers preventing potential therapies from entering into clinical trials for rare or neglected disorders. While we do not underestimate the difficulty of developing treatments for people with these illnesses, this program provides new hope to many people world-wide."

TRND will work closely with disease-specific experts on selected projects, leveraging both the in-house scientific capabilities needed to carry out much of the preclinical development work, and contracting out other parts, as scientific opportunities dictate. Its strategies will be similar to approaches taken by pharmaceutical and biotechnology companies, but TRND will be working on diseases mostly ignored by the private companies. Importantly, TRND will also devote some of its efforts to improving the drug development process itself, creating new approaches to make it faster and less expensive.

If a compound does survive this preclinical stage, TRND will work to find a company willing to test the therapy in patients. There are several stages to the clinical trials process that can take several years before the safety and efficacy of a new drug is determined. FDA will only approve a drug for general use after it passes these trials.

The clinical trials process is also expensive, but the failure rate is lower at this stage.

"NIH traditionally invests in basic research, which has produced important discoveries across a wide range of illnesses," said NHGRI Acting Director Alan E. Guttmacher, M.D. "Biotechnology and pharmaceutical companies have enormous strength and experience in drug development, but to maximize return-on-investment work primarily on common illnesses. TRND will develop promising treatments for rare diseases to the point that they are sufficiently "de-risked" for pharmaceutical companies, disease-oriented foundations, or others, to undertake the necessary clinical trials. NIH's goal is to get new medications to people currently without treatment, and thus without hope."

"With this new funding, TRND will develop teams of scientists who can do the hard work of optimizing chemicals that we or others discover that may treat rare diseases and turn them into actual drugs," said NCGC Director Christopher P. Austin, M.D., who is also the Senior Advisor for Translational Research to the NHGRI Director. "This will still be hard work and it will take time and produce failures. Unlike traditional drug development, however, where only successes are published, we will publish our failures as well, so everyone in the drug development community can learn from them. That alone could be revolutionary."

If all the preclinical hurdles can be crossed, a possible treatment must still be tested in a series of clinical trials. TRND will seek to take advantage of several NIH resources that can help launch human studies, including the NIH Clinical Center, the NIH Rapid Access to Interventional Development (NIH-RAID), and the Clinical and Translational Science Awards (CTSA) program.

TRND will seek a wide range of collaborations with academic researchers, as well as partnerships with patient advocacy organizations, disease-oriented foundations and others interested in treatments for particular illnesses. TRND's leaders hope that the collaborations will help lay the groundwork for clinical trials once that point in drug development is reached.

TRND is currently setting up an oversight process to help it decide which projects that address thousands of rare and neglected diseases will be pursued. Leadership currently envisions a small number of diseases being studied each year, with strict criteria used to determine which molecules will be studied for which diseases. NIH expects to use existing intellectual property policies to transfer licenses for TRND-discovered drugs to private companies or others for development, clinical testing and marketing.
Advertisement