We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Novel Genetic Insights on Multiple Sclerosis Risk
News

Novel Genetic Insights on Multiple Sclerosis Risk

Novel Genetic Insights on Multiple Sclerosis Risk
News

Novel Genetic Insights on Multiple Sclerosis Risk

Credit: Colin Behrens/ Pixabay
Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Novel Genetic Insights on Multiple Sclerosis Risk"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

An international team of researchers led by Karolinska Institutet in Sweden have discovered that a cell type in the central nervous system known as oligodendrocytes might have a different role in the development of multiple sclerosis (MS) than previously thought. The findings, published in the journal Neuron, could open for new therapeutical approaches to MS.


MS is driven by immune cells attacking oligodendrocytes and the myelin they produce, which is an insulating layer ensheathing nerve cells. These attacks disrupt information flow in the brain and spinal cord and causes nerve damage that triggers symptoms associated with MS such as tremors and loss of gait.


Understanding which mechanisms influence the risk of MS is central to finding effective therapies. Previous genetic studies have found regions in the human genome that contain mutations (single nucleotide polymorphisms) associated with increased risk of MS. Many of these regions are localized near genes that are active in immune cells.

Open configuration of the genome

In this study, the researchers show in mice and human brain samples that oligodendrocytes and their progenitors have an open configuration of the genome near immune genes and at MS-risk associated regions. This suggests that the MS risk mutations may have a role in the activation of nearby genes in oligodendrocytes and their progenitors, meaning they could play a more important part than previously thought in the development of MS.


“Our findings suggest that the risk for multiple sclerosis might manifest by misfunction not only of immune cells, but also of oligodendrocytes and their precursor cells,” says Gonçalo Castelo-Branco, professor at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, who conducted the study with co-first authors Mandy Meijer, a PhD student, and Eneritz Agirre, a researcher. “These findings indicate that these cells can also be targeted for therapeutical approaches for MS, to prevent misfunction that might be caused by these mutations.”


Reference: Meijer M, Agirre E, Kabbe M, et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility. Neuron. 2022;0(0). doi: 10.1016/j.neuron.2021.12.034


This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

 
Advertisement