We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Omicia and Johns Hopkins Receive Small Business Technology Transfer Grant from NIH
News

Omicia and Johns Hopkins Receive Small Business Technology Transfer Grant from NIH

Omicia and Johns Hopkins Receive Small Business Technology Transfer Grant from NIH
News

Omicia and Johns Hopkins Receive Small Business Technology Transfer Grant from NIH

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Omicia and Johns Hopkins Receive Small Business Technology Transfer Grant from NIH"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Omicia, Inc. has been awarded its fourth NIH grant, a $182,732 Small Business Technology Transfer (STTR) Phase I grant from the National Heart, Lung, and Blood Institute of the National Institutes of Health.

This industry/academia collaboration between Omicia and Johns Hopkins University (JHU) will be headed by Principal Investigator Dr. Joel Bader, an Assistant Professor of Biomedical Engineering at JHU.

Drawing upon Omicias advanced understanding of disease genes and phenotypes and Dr. Baders expertise in gene interaction networks and model organism genetics, the project will identify genes whose variants increase the risk of developing cardiovascular disease.

Dr. Bader and Omicia aim to elucidate the genetic risk factors for cardiovascular disease in humans by drawing parallels from systematic genetic screens performed on fruit flies and other model organisms.

The goal of these screens is to determine phenotypes (observable physical characteristics) for every relevant gene in each of the targeted model organisms. In this funded collaboration, data mining algorithms will be developed to select sets of genes, or modules, that give rise to similar phenotypes across the range of model organisms. These conserved modules are likely to play significant roles in human health and disease.

"This project will give us the opportunity to apply the latest findings in genetic research to the challenging problem of figuring out the molecular causes of complex diseases," said Dr. Bader, who is an inventor on the patent for the new high-speed 454 DNA sequencing technology that was recently used to completely sequence the first individual human genome.

"By combining our research group's experience in analyzing gene interactions with Omicia's cutting-edge gene selection infrastructure, we aim to significantly advance the understanding of the genetic basis of cardiovascular disease, paving the way towards the earliest possible diagnosis and the most appropriate therapeutic options."

Advertisement