We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Oviposition Behaviour  of Pest Insects Keeps Bt-Cotton Durably Resistant

Oviposition Behaviour of Pest Insects Keeps Bt-Cotton Durably Resistant

Oviposition Behaviour  of Pest Insects Keeps Bt-Cotton Durably Resistant

Oviposition Behaviour of Pest Insects Keeps Bt-Cotton Durably Resistant

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Oviposition Behaviour of Pest Insects Keeps Bt-Cotton Durably Resistant"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

 Moths behave like Darwin's finches - The oviposition behaviour of insect pests results in an improved durability of insect resistance in so-called Bt-crops, while promoting the survival of pest insects elsewhere in nature. This is the result of research carried out by the Plant Sciences Group of Wageningen UR in collaboration with the University of North Carolina (USA). Bt-cotton has been cultivated on a large scale in countries such as China, India and the US for over thirteen years now. During this period the crops' resistance has hardly ever been broken. According to the scientists, this can likely be attributed to the fact that some insect pest individuals have a preference for laying eggs on other plants. The larvae from those eggs will develop normally, giving them a selective advantage. The results were recently published in the scientific journal

Evolutionary Ecology - The scientists made their discovery using computer models. "These models show that the cultivation of, for instance, moth-resistant cotton is evolutionarily beneficial for female moths that prefer laying their eggs on other plant species," says Marcel Dicke, Professor of Entomology at the Plant Sciences Group. "As a result, the majority of the moth population will acquire a genetic composition that makes them avoid laying their eggs on cotton and prefer to do so on other host plants. This implies that the cotton plants will remain durably resistant and free from pest insects, while the moths can survive elsewhere in nature."

This is the first time that research has been performed into the effect of insect behaviour on the durability of plant resistance against insects in GM crops. "It is actually quite remarkable that this issue has never been investigated in this way," says Maarten Jongsma, scientist at Plant Research International of the Plant Sciences Group. "Based on other modelling studies, it was generally believed that the resistance to insects was not durable and could only be made to last longer by planting both resistant and non-resistant plants together in order to reduce the selection pressure. This is why US professor Fred Gould, who has also been involved in the research, developed the refuge strategy, which was adopted as official policy. But our research shows that the chance of breaking the resistance may be much smaller than the chance of changing insect behavioural preferences."

Increase in GM crops - Bt-cotton and Bt-maize genetically engineered for resistance to the larvae of specific moths have successfully been introduced worldwide. The introduced genes code for toxins that are naturally present in Bt-cotton. In the US, China and India the method is used to protect nearly all cotton against the main pest insects, resulting in increased yields and lower costs for combating insects.Bacillus thuringiensis bacteria, hence the names Bt-maize and Bt-cotton

Refuge approach - By planting resistant plants mixed with non-resistant plants, the development of insensitive insects was expected to slow down due to the reduced selection pressures. This concept was the rationale behind the refuge strategy, which has been applied over the past thirteen years forcing farmers to sow 20 percent of their acreage with susceptible plants. As a result a susceptible insect pest population is maintained, in order to maintain an effective plant resistance.

Behaviour - Insects are usually capable of reproducing on more than one type of plant. The behaviour of the female determines on which plant they lay their eggs and every female has her own preference. Some female moths prefer to lay their eggs on other plants than cotton, even if the cotton is not resistant to its larvae. The preference is determined genetically.