We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Packaging and Unpacking of the Genome
News

Packaging and Unpacking of the Genome

Packaging and Unpacking of the Genome
News

Packaging and Unpacking of the Genome

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Packaging and Unpacking of the Genome"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

DNA represents a dynamic form of information, balancing efficient storage and access requirements. Packaging approximately 1.8m of DNA into something as small as a cell nucleus is no mean feat, but unpacking it again to access the required sections and genes? That requires organisation.

In a nutshell, this is achieved through DNA condensed and packaged as chromatin, a complex of DNA and proteins called histones, which is constantly modified as the DNA is accessed. The histone proteins need constant replacement to maintain the correct chromatin structure required for all DNA related processes in the cell.

To understand more about the importance of histone replacement, researchers at the Babraham Institute and MRC Clinical Sciences Centre used developing mouse egg cells, oocytes. Developing oocytes provide a system where the mechanics of how DNA is packaged into cells can be explored in the absence of DNA replication, as egg cells do not divide. However, their genomes are highly active as the development of the egg involves widespread turning on and off of genes and DNA modification before the mature egg cell is ready for fertilisation. The work relied on the Institute's expertise in single cell analysis, allowing accurate mapping of the epigenetic landscape in precious cells.

The researchers deleted a histone chaperone protein - one of a group of proteins that are responsible for replacing histones in the chromatin structure - and analysed the effects on egg cell development, DNA integrity and accumulation of DNA methylation.

"Oocytes lacking the Hira histone chaperone showed severe developmental defects which often led to cell death." said Dr Gavin Kelsey, research group leader in the Institute's Epigenetics programme and author on the paper. "The whole system is disrupted, eggs accumulate DNA damage and the altered chromatin means that genes cannot be efficiently silenced or activated. But we also uncovered an intricate relationship between the different epigenetic systems operating in the oocyte, where failure to ensure normal histone levels severely compromised deposition of methylation on the underlying DNA."

The research addresses the importance of histone turnover in maintaining genomic fidelity and adds to our understanding about the mechanisms in place to protect the integrity of the genome as it is remodelled and reshaped. Studying this in the context of the developing oocytes provides new insights into our dynamic genome, unclouded by the complications of DNA replication, and also reveals how important maintaining chromatin dynamics is to the integrity of our gametes.

Advertisement