We've updated our Privacy Policy to make it clearer how we use your personal data. We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement

Scientists Discover Role of Enzyme in DNA Repair

Listen with
Speechify
0:00
Register for free to listen to this article
Thank you. Listen to this article using the player above.

Want to listen to this article for FREE?

Complete the form below to unlock access to ALL audio articles.

Read time: 1 minute

Scientists from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Cancer Institute (NCI), and Integrative Bionformatics Inc. have made a discovery about the role of an enzyme called ataxia telangiectasia mutated protein (ATM) in the body's ability to repair damaged DNA.

When DNA within a cell is damaged, the cell's protective mechanism must do one of two things: repair the defect or "commit suicide," says Rafael Casellas, Ph.D., an investigator in NIAMS' Molecular Immunology and Inflammation Branch and author of a new paper describing the discovery. But the way in which the cell performs these protective functions has been largely a mystery, says Casellas, whose research is beginning to unravel this mystery.

Casellas' research focuses largely on certain genes that are deliberately broken and repaired as part of the immune response.  Through a tightly controlled process of breaking and rejoining DNA segments, immune system cells called B lymphocytes are able to produce tens of millions of different types of antibodies to fight almost limitless types of invaders. This process of genetic recombination requires the activity of repair enzymes, which must be able to recognize and repair breaks in tightly wrapped and inaccessible DNA.

During immunoglobulin gene recombination, DNA is rendered accessible by the process of transcription, which unzips double-stranded DNA as part of the conversion of genetic information into functional proteins.

While transcription ensures accessibility to DNA lesions, Casellas wondered how it was possible for repair enzymes to do their job if transcription continued once DNA had been damaged.

"Imagine a piece of DNA as a zipper," he says. "The head of the zipper (the transcription complex) will repeatedly go through the two interlocked sides, coming to the broken part, and eventually falling off. One could imagine that this unzipping activity might interfere with the mechanism that is trying to repair the damaged DNA."

Casellas hypothesized that once DNA lesions were generated, a regulatory activity would shut down transcription until repair enzymes corrected the damage. But because B lymphocyte cells are relatively scarce, Casellas and his colleagues chose to focus their investigation on a more abundant family of genes, known as ribosomal genes, as a substitute.

"What these results told us was that these proteins were responsible for shutting down the transcription machinery near sites of DNA damage. This activity perhaps ensures repair in an undisturbed environment. If this is indeed the case, one could suspect that in the absence of these factors, repair is compromised, leading to genetic aberrations," Casellas says.

Indeed, scientists already know that people deficient in ATM develop such genetic abnormalities, cell transformation and tumor development. Although it's too soon to say whether these laboratory discoveries will translate into clinical use, Casellas is enthused about the work.

"With this new technology we can visualize for the first time the interplay between complex mechanisms such as DNA repair and gene transcription, not in a test tube, but in living cells and in real time. This approach will help us unravel the inner molecular pathways of our cells in health and disease, such as cancer."