We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Scientists Form International Cancer Genome Consortium
News

Scientists Form International Cancer Genome Consortium

Scientists Form International Cancer Genome Consortium
News

Scientists Form International Cancer Genome Consortium

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Scientists Form International Cancer Genome Consortium"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Research organizations from around the world have announced they are launching the International Cancer Genome Consortium (ICGC), a collaboration designed to generate high-quality genomic data on up to 50 types of cancer through efforts projected to take up to a decade.

The ICGC will make its data freely available to the global research community. It invites research organizations in all nations to participate.

"Cancer's complexity poses an enormous challenge. NIH is highly encouraged that the worldwide scientific community is joining to meet this challenge, and we are pleased to be a member of this ambitious international endeavor," said Elias A. Zerhouni, M.D., director of the National Institutes of Health, which is the U.S. research organization taking part in the ICGC. "The consortium's commitment to making its data rapidly available in public databases will serve to accelerate research into the causes and control of cancer in the United States and throughout the world."

Each ICGC member intends to conduct a comprehensive, high-resolution analysis of the full range of genomic changes in at least one specific type or subtype of cancer, with studies built around common standards of data collection and analysis. Each project is expected to involve specimens from approximately 500 patients and have an estimated cost of $20 million.

As part of its coordination efforts, the ICGC will generate a list of approximately 50 cancer types and subtypes that are of clinical significance around the globe. ICGC members plan to assume responsibility for specific cancers, and one of the ICGC's roles should be to facilitate the exchange of information so participants' efforts do not duplicate each other.

Current ICGC members include:
• AUSTRALIA: National Health and Medical Research Council (Observer Status)
• CANADA: Genome Canada; Ontario Institute for Cancer Research
• CHINA: Chinese Cancer Genome Consortium
• EUROPE: European Commission (Observer Status)
• FRANCE: Institute National du Cancer
• INDIA: Department of Biotechnology, Ministry of Science & Technology
• JAPAN: RIKEN; National Cancer Center
• SINGAPORE: Genome Institute of Singapore
• UNITED KINGDOM: The Wellcome Trust; Wellcome Trust Sanger Institute
• UNITED STATES: NIH


"Clearly, there is an urgent need to reduce cancer's terrible toll. To help meet that need, the consortium will use new genome analysis technologies to produce comprehensive catalogs of the genetic mutations involved in the world's major types of cancer," said Thomas Hudson, M.D., of the ICGC Secretariat, which is based at the Ontario Institute for Cancer Research in Toronto. "Such catalogs will be valuable resources for all researchers working to develop new and better ways of diagnosing, treating and preventing cancer."

Worldwide, more than 7.5 million people died of cancer and more than 12 million new cases of cancer were diagnosed in 2007. Unless progress is made in understanding and controlling cancer, those numbers are expected to rise to 17.5 million deaths and 27 million new cases in 2050.

Once thought of as a single disease, cancer is now understood to consist of a large number of different conditions. In almost all forms, however, cancer changes the genetic blueprint, or genomes, of cells, and causes disruptions within normal biological pathways, leading to uncontrolled cell growth. Because genomic changes are often specific to a particular type or stage of cancer, systematically mapping the changes that occur in each cancer could provide the foundation for research to identify new therapies, diagnostics and preventive strategies.

The ICGC's main criteria for prioritizing cancer types include: impact, including incidence and mortality rates, availability of therapies and age of onset; scientific interest; and feasibility, which includes the ability to obtain enough high-quality samples to conduct a large-scale project.

To facilitate comparisons among different types of cancer, the ICGC guidelines list key factors for its members to consider in the production of genomic catalogs. Those factors include comprehensiveness, which involves detecting all cancer-related genetic mutations that occur in at least 3 percent of tumor samples; resolution, which involves generating data at the level of individual DNA bases; quality, which involves monitoring based on common standards for pathology and technology; and controls, which involves comparisons of data from matched, non-tumor tissue.

ICGC member nations plan to agree to common standards for informed consent and ethical oversight. While the informed consent process will necessarily differ according to each member country's requirements, the consortium's policies state that cancer patients enrolled in an ICGC-related study should be informed that their participation is voluntary, that their clinical care will not be affected by their participation and that data obtained from analyses using their samples will be made available to the international research community.

Advertisement