We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Sirna Announces Licensing Agreement with UMMS

Sirna Announces Licensing Agreement with UMMS

Sirna Announces Licensing Agreement with UMMS

Sirna Announces Licensing Agreement with UMMS

Read time:

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Sirna Announces Licensing Agreement with UMMS"

First Name*
Last Name*
Email Address*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Sirna Therapeutics, Inc. has announced that it has signed an exclusive worldwide licensing agreement with the University of Massachusetts Medical School (UMMS) for the rights to patents covering microRNA technology for the modulation of gene expression.

MicroRNA is involved in the RNA interference mechanism and can play a critical role in gene silencing. Blocking the function of miRNAs holds significant potential for the treatment of human disease.

In addition to the modulation of gene expression by blocking miRNA function, miRNAs on their own can be used as therapeutic agents.

Like short interfering RNAs, miRNAs are involved in the RNA interference mechanism.

However, while siRNAs direct the cleavage of messenger RNA synthesized by a gene, microRNAs appear to predominantly block translation of proteins by binding to the mRNA.

The mechanism by which siRNAs and miRNAs induce gene silencing are complementary to one another, thereby presenting a dual approach to harnessing the RNAi mechanism to down regulate pathogenic proteins and viruses.

"Exclusive license to these Zamore miRNA patents, combined with Sirna's existing intellectual property on miRNA, gives our Company a leading patent position in the emerging area of miRNA technology and use of miRNA as therapeutic agents or targets," said Bharat Chowrira, Ph.D., Vice President, Legal Affairs and Chief Patent Counsel.

"With these new patents, we have positioned ourselves to capitalize on a broad intellectual property estate, which now enables Sirna to pursue multiple RNAi-based therapeutic approaches."

The methodology, invented by Phillip Zamore, Ph.D. professor of biochemistry & molecular pharmacology, and Gyorgy Hutvagner, Ph.D, both of UMMS, provides methods for inhibition of small RNA function, such as microRNA function in vitro and in vivo.

Dr. Zamore and his colleagues developed an elegant system of using short pieces of oligonucleotides that bind to the target microRNAs and block their function, thereby modulating target gene expression.

These oligonucleotides are referred to as the anti-RISC oligonucleotides. These patents describe methods that can be used not only for advancing RNAi basic research, but also for developing miRNA-based therapeutics.

"This invention by Dr. Zamore and his colleagues represents a powerful approach for modulating miRNA function," said James P. McNamara, Ph.D., Executive Director of the Office of Technology Management at the University of Massachusetts Medical School.

"We are pleased to license this technology exclusively to Sirna as we believe the Company is at the forefront of RNAi-based therapeutic development."

The Zamore miRNA patents are solely owned by the University of Massachusetts.

Under the terms of the agreement, Sirna has an exclusive worldwide license to these patents for all uses, including therapeutics, diagnostics, and research reagents.