We've updated our Privacy Policy to make it clearer how we use your personal data.

We use cookies to provide you with a better experience. You can read our Cookie Policy here.

Advertisement
Software Could Help Predict and Eliminate Allergens
News

Software Could Help Predict and Eliminate Allergens

Software Could Help Predict and Eliminate Allergens
News

Software Could Help Predict and Eliminate Allergens

Read time:
 

Want a FREE PDF version of This News Story?

Complete the form below and we will email you a PDF version of "Software Could Help Predict and Eliminate Allergens"

First Name*
Last Name*
Email Address*
Country*
Company Type*
Job Function*
Would you like to receive further email communication from Technology Networks?

Technology Networks Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Chris Lawrence and Ha Dang, researchers from the Virginia Bioinformatics Institute and the Department of Biological Sciences in the College of Science at Virginia Tech, have created Allerdictor, a new computational approach and software that helps predict allergens. A scientific article describing this method was recently published in the journal Bioinformatics.

“As more biotechnology derived products like new protein-based therapeutics or genetically modified plants are developed, it becomes increasingly important for potential allergens to be identified and dealt with before these come to market," said Lawrence, the project director. "Predicting allergens more accurately will also aid in basic scientific research.”

The Virginia Tech scientists report that Allerdictor predicts allergens with very high accuracy at fast speeds. Instead of using standard approaches for identifying allergens, Allerdictor uses machine-learning approaches — methods borrowed from artificial intelligence research — to learn and apply that learning to analyze large-scale submissions for the presence of allergens. 

This approach makes it easier and faster to scan large sequences of data, eliminating allergens and making sure businesses and consumers are protected.

Ha Dang, the first author of the paper and the developer of Allerdictor, said, “This new approach for identifying potential allergens is also applicable when analyzing the vast amount of genomic data that is being produced from various DNA sequencing projects worldwide. Most current methods of allergen prediction tend to be slow and inaccurate, yielding false positives that skew the data. Allerdictor literally takes minutes to analyze entire genomes.”

Allerdictor is available free online for educational and nonprofit public use.

Advertisement